
,

Inside AppleTalk; Second Edition
by Gursharan S. Sidhu, Richard F. Andrews, Alan B. Oppenheimer
Apple Computer, Inc.

D~

I

LocaiTalk I
Link Access . ,

Protocol ~

I
LocaiTalk
hardware

Ethernet
hardware_ __

\". ~ ~ ' ~-~.

'
' - -

llO~~

AJ[SJ&

UOSfPPV

li

'

> $34.95 USA

The Apple®
Communications
Ilbrary
7be Official Publications from Apple Computer, Inc.

The Apple Communications Library provides
complete infonnation on Apple Computer, Inc.'s
approach to networking and communications.
The library consists of three related series: Apple
Communications Basics, Apple Communications
Reference, and Apple Communications Technical.
These books offer comprehensive material on a
wide variety of topics for a vast range of readers,
from basic-level users to network administrators
and developers.

The Apple Communications Basics series covers
networking fundamentals. Designed for those
new to networks, these introductory-level books
explain all aspects of networking.

The Apple Communications Reference series
provides overviews of networking topics. These
books are written for developers, network
administrators, or users, and currently include an
overview of Apple Talk®, Apple's networking
system.

For developers and programmers, technical detail is
provided by the Apple Communications Technical
series. These books include advanced-level
information about the AppleTalk network system's
capabilities and specifications necessary to allow
implementation of a system by developers. Inside
AppleTa/k is the ftrst in this series.

) I

\
\

Inside AppleTalk®
Second Edition

Gursharan S. Sidhu
Technical Director

Richard F. Andrews
Staff Engineer

Alan B. Oppenheimer
Staff Engineer

Network Systems Development

Apple Computer, Inc.

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sidney Singapore Tokyo Madrid SanJuan Paris
Seoul Milan Mexico City Taipei

ti APPLE COMPUTER, INC.

Copyright © 1990 by Apple
Computer, Inc.

All rights reserved. No part of this
publication may be reproduced,
stored in a retrieval system, or
transmitted, in any form or by
any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
consent of Apple Computer, Inc.
Printed in the United States of
America.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
(408) 996-1010

Apple, the Apple logo, AppleShare,
AppleTalk, Apple lie, Apple IIGS,

EtherTalk, ImageWriter,
LaserWriter, Macintosh, ProDOS,
and TokenTalk are registered
trademarks of Apple Computer,
Inc.

Apple Desktop Bus, Finder,
LocalTalk, and MultiFinder are
trademarks of Apple Computer,
Inc.

AlisaShare is a trademark of Alisa
Systems.

CUt is a trademark of Network

IBM and SNA are registered
trademarks of International
Business Machines Corporation.

InBox is a trademark of Symantec
Corporation's Think Technologies.

lTC Garamond and lTC Zapf
Dingbats are registered
trademarks of International
Typeface Corporation.

Kinetics is a trademark of
Kinetics, Inc.

LANSTAR and Meridian are
registered trademarks of
Northern Telecom.

LANSTAR AppleTalk is a joint
trademark of Northern Telecom
and Apple Computer, Inc.

Linotronic is a registered
trademark of Linotype Co.

Microsoft and MS-DOS are
registered trademarks of
Microsoft Corporation.

Netway is a registered trademark
of Tri-Data Systems, Inc.

NFS is a trademark of Sun
Microsystems.

PacerShare is a registered
trademark of Pacer Software, Inc.

PhoneNET is a registered
trademark of Farallon Computing.

Innovations. PostScript is a registered
DECnet and VAX are trademarks trademark, and Illustrator is a
of Digital Equipment Corporation. trademark, of Adobe Systems

Incorporated.

UNIX is a registered trademark of
AT&T Information Systems.

Varityper is a registered trade
mark, and VT600 is a trademark,
of AM International, Inc.

Zilog is a trademark of Infocom,
Inc.

No licenses, express or implied, are
granted by reason of this book
describing certain processes or
techniques that may be the
intellectual property of the author
or others, including, but not
limited to, United States Patents
4,661,902 and 4,689,786 assigned to
Apple Computer, Inc.

Simultaneously published in the
United States and Canada.

ISBN 0-201-55021-0
4 5 6 7 8 9 10 - DO - 959493
Fourth printing. January 1993

Contents

Figures and tables I xv
Acknowledgments I xx
Acknowledgments to First Edition I xxiii

Introduction I 1-1

Network systems I 1-4
Protocols-What are they? I 1-4
AppleTalk I I-4

Why did we design it? I 1-5
Key goals of the AppleTalk architecture I 1-6

The AppleTalk network system I 1-8
AppleTalk connectivity I 1-9
Apple Talk end-user services I 1-15

AppleTalk protocol architecture and the ISO-OSI reference model I 1-20
AppleTalk Phase 2 I 1-24
Thoughts of the future I 1-25

Scope I 1-25
Reach I 1-25

About Inside AppleTalk I 1-26
Typographic and graphic conventions used in this book I 1-27
Where to go for more information I 1-28

iii

Part I Physical and Data Links

1 LocalTalk Link Access Protocol I 1-1

Link access control I 1-3
Node addressing I 1-3

Node IDs I 1-4
Dynamic node ID assignment I 1-4

Data transmission and reception I 1-6
LIAP packet I 1-6
LIAP frame I 1-9

Data packet transmission I 1-10
Carrier sensing and synchronization I 1-10
Transmission dialogs I 1-11
Directed data packet transmission I 1-14
Broadcast data packet transmission I 1-15

Packet reception I 1-15

2 AppleTalk Address Resolution Protocol I 2-1
Protocol families and stacks I 2-3
Protocol and hardware addresses I 2-3

Address resolution I 2-3
AARP services I 2-5
AARP operation I 2-6

Address mapping I 2-7
Dynamic protocol address assignment I 2-8

Retransmission of AARP packets I 2-9
Filtering incoming packets I 2-9

AMT entry aging I 2-10
AARP packet formats I 2-11

iv CONTENTS

3 EtherTalk and TokenTalk link Access Protocols I 3-1
802.2 I 3-3
ELAP packet format I 3-5
TLAP packet format I 3-6
Address mapping in ELAP and TLAP I 3-7

Use of AARP by ELAP and TLAP I 3-8
AARP specifics for ELAP and TLAP I 3-9
Zone multicast addresses used by ELAP and TLAP I 3-10

AppleTalk AARP packet formats on Ethernet and token ring I 3-11

Part ll End-to-End Data Flow

4 Datagram Delivery Protocol I 4-1

Internet routers I 4-5
Sockets and socket identification I 4-5
Network numbers and a node's Apple Talk address I 4-6
Special DDP node IDs I 4-6
AppleTalk node address acquisition I 4-7

Node address acquisition on nonextended networks I 4-8
Node address acquisition on extended networks I 4-8

DDP type field I 4-9
Socket listeners I 4-10
DDP interface I 4-10

Opening a statically assigned socket I 4-11
Opening a dynamically assigned socket I 4-12
Closing a socket I 4-12
Sending a datagram I 4-12
Datagram reception by the socket listener I 4-13

DDP internal algorithm I 4-13
DDP packet format I 4-13

Short and extended headers I 4-14
DDP checksum computation I 4-17
Hop counts I 4-17

Contents v

DDP routing algorithm I 4-18
Optional "best router" forwarding algorithm I 4-20

Sockets and use of name binding I 4-21
Network numlm equivalence I 4-21

5 Routing Table Maintenance Protocol I 5-l
Internet routers I 5-4

Local routers I 5-4
Half routers I 5-4
Backbone routers I 5-4

Router model I 5-6
Internet topologies I 5-7
Routing tables I 5-8
Routing table maintenance I 5-10

Reducing RTMP packet size I 5-11
Aging of routing table entries I 5-12
Validity and send-RTMP timers I 5-13

RTMP Data packet format I 5-13
Sender's network number I 5-15
Sender's node ID I 5-15
Version number indicator I 5-15
Routing tuples I 5-16

Assignment of network number ranges I 5-16
RTMP and nonrouter nodes I 5-17

Nodes on nonextended networks I 5-17
Nodes on extended networks I 5-19

RTMP Route Data Requests I 5-20
RTMP table initialization and maintenance algorithms I 5-21

Initialization I 5-21
Maintenance I 5-21
Tuple matching defmitions I 5-25

RTMP routing algorithm I 5-25

6 AppleTalk Echo Protocol I 6-1

vi CONTENTS

Part m Named Entities

7 Name Binding Protocol I 7-1

Network-visible entities I 7-4
Entity names I 7-4
Name binding I 7-5

Names directory and names tables I 7-6
Aliases and enumerators I 7-6
Names information socket I 7-7

Name binding services I 7-7
Name registration I 7-7
Name deletion I 7-8
Name lookup I 7-8
Name confumation I 7-8

NBP on a single network I 7-9
NBP on an internet I 7-10

Zones I 7-10
Name lookup on an internet I 7-10

NBP interface I 7-11
Registering a name I 7-12
Removing a name I 7-12
Looking up a name I 7-13
Confirming a name I 7-13
NBP packet formats I 7-14
Function I 7-15
Tuplecount I 7-15
NBP ID I 7-15
NBP tuple I 7-15

8 Zone Information Protocol I 8-1

ZIP services I 8-4
Network-to-zone-name mapping I 8-4

Zone information table I 8-4
Zone information socket: ZIP Queries and Replies I 8-5
ZIT maintenance I 8-5

Contents vii

Zone name listing I 8-7
Zone name acquisition I 8-9

Verifying a saved zone name I 8-9
Choosing a new zone name I 8-10
Zone multicasting I 8-10
Aging the zone name I 8-10

Packet formats I 8-11
ZIP Que!)' and Reply I 8-11
ZIP ATP Requests I 8-13
ZIP GetNetlnfo Request and Reply I 8-16

Zone multicast address computation I 8-18
NBP routing in IRs I 8-18

Generating FwdReq packets I 8-19
Converting FwdReqs to LkUps I 8-19

Zones list assignment I 8-20
Zones list changing I 8-21

Changing zones lists in routers I 8-21
Changing zone names in nodes I 8-22

Timer values I 8-24

Part IV Reliable Data Delivery

9 AppleTalk Transaction Protocol I 9-1

Transactions I 9-3
At-least-once (ALO) transactions I 9-5
Exactly-once (XO) transactions I 9-6

Multipacket responses I 9-9
Transaction identifiers I 9-9
ATP bitmap/sequence number I 9-10

viii C 0 NT E NT S

Responders with limited buffer space I 9-12
A TP packet format I 9-13
ATP interface I 9-16

Sending a request I 9-17
Opening a responding socket I 9-18
Closing a responding socket I 9-19
Receiving a request I 9-19
Sending a response I 9-20

ATP state model I 9-21
A TP requester I 9-22
ATP responder I 9-24

Optional ATP interface calls I 9-26
Releasing a RspCB I 9-26
Releasing a TCB I 9-26

Wraparound and generation of TIDs I 9-27

10 Printer Access Protocol I 10-1

PAP services I 10-4
The protocol I 10-5

Connection establishment phase I 10-7
Data transfer phase I 10-9
Duplicate filtration I 10-11
Connection termination phase I 10-11
Status gathering I 10-12

PAP packet formats I 10-12
PAP function and result values I 10-16
PAP client interface I 10-16
PAP specifications for the Apple LaserWriter printer I 10-21

Contents ix

11 AppleTalk Session Protocol I 11-1

What ASP does I 11-4
What ASP does not do I 11-4
ASP services and features I 11-5

Opening and closing sessions I 11-6
Session maintenance I 11-9
Commands on an open session I 11-10
Sequencing and duplicate filtration I 11-14
Getting service status information I 11-15

ASP client interface I 11-16
Server-endcalls I 11-16
Workstation-end calls I 11-23

Packet formats and algorithms I 11-27
Opening a session I 11-27
Getting server status I 11-29
Sending a command request I 11-30
Sending a write request I 11-32
Maintaining the session I 11-35
Sending an attention request I 11-36
Closing a session I 11-36
Checking for reply size errors I 11-37
Timeouts and retry counts I 11-38
SPFunction values I 11-39

12 AppleTalk Data Stream Protocol I 12-1

ADSP services I 12-4
Connections I 12-4

X CONTENTS

Connection states I 12-5
Half-open connections and the connection timer I 12-5
Connection identifiers I 12-6

Data flow I 12-6
Sequence numbers I 12-7
Error recovery and acknowledgments I 12-7
Flow control and windows I 12-8
ADSP messages I 12-9
Forward resets I 12-9
Summary of sequencing variables I 12-10

Packet format I 12-12
Control packets I 12-14
Data-flow examples I 12-15
Attention messages I 12-19
Connection opening I 12-22

Connection-opening dialog I 12-24
Open-connection Control packet format I 12-27
Error recovery in the connection-opening dialog I 12-30
Connection opening outside of ADSP I 12-34
Connection-listening sockets and servers I 12-35
Connection-opening filters I 12-36

Connection closing I 12-38

Part V End-User Services

13 AppleTalk Filing Protocol I 13-1

File system structure I 13-7
File server I 13-8
Volumes I 13-9
Catalog node names I 13-13
Directories and files I 13-15
File forks I 13-22

Designating a path to a CNode I 13-23
AFP login I 13-27
File server security I 13-28

User authentication methods I 13-28
Volume passwords I 13-30
Directory access control I 13-31

Contents xi

File sharing modes I 13-35
Access modes and deny modes I 13-35
Synchronization rules I 13-36

Desktop database I 13-37
AFP's use of ASP I 13-38
An overview of AFP calls I 13-39

Server calls I 13-40
Volume calls I 13-41
Directory calls I 13-42
File calls I 13-43
Combined directory-file calls I 13-43
Fork calls I 13-44
Desktop database calls I 13-45

AFP calls I 13-46

14 Print Spooling Architecture I 14-1

Printing without a spooler I 14-4
Benefits of printing with a spooler I 14-5
Background spoolers versus spooler/servers I 14-6
Impact of the Macintosh on printing I 14-6
Printing without a spooler I 14-7
Printing with a spooler/server I 14-9
Controlling printer access I 14-10
User authentication dialog I 14-12
Direct passthrough I 14-14
Spooler/server queue management I 14-15
About document structuring conventions I 14-18

About PostScript document files I 14-18
About PostScript print jobs I 14-19

Comment format I 14-20
Syntax conventions I 14-21

Comments in documents I 14-22
Prologue and script I 14-22
Pages I 14-23
Line length I 14-23

xii CONTENTS

Structure comments I 14-23
Header comments I 14-25
Body comments I 14-28

Resource comments I 14-32
Conventions for using resource comments I 14-32
Defmitions I 14-33

Query comments I 14-34
Conventions for using query comments I 14-35
Spooler responsibilities I 14-35
Definitions I 14-36

Sample print streams I 14-41

Appendix A LocalTalk Hardware Specifications I A-1
LocalTalk electrical characteristics I A-2

Bit encoding and decoding I A-2
Signal transmission and reception I A-3
Carrier sense I A-3

ElectricaVmechanical specification I A-3
Connection module I A-4
LocalTalk connector I A-5
Cable connection I A-5

Transformer specifications A-5
Environmental conditions I A-7
Mechanical strength and workmanship I A-8

Appendix B UAP Access Control Algorithms I B-1

Assumptions I B-2
Global constants, types, and variables I B-2
Hardware interface declarations I B-4
Interface procedures and functions I B-5
InitializeLLAP procedure I B-6
AcquireAddress procedure I B-7
TransmitPacket function I B-8
TransmitLinkMgmt function I B-8

Contents xiii

TransmitFrame procedure I B-14
ReceivePacket procedure I B-15
ReceiveLinkMgmt function I B-15
ReceiveFrame function I B-17
Miscellaneous functions I B-19
SCC implementation I B-20
CRC-CCITT calculation I B-22

Appendix C AppleTalk Parameters I C-1

LLAP parameters I C-2
AARP parameters I C-4
EtherTalk and TokenTalk parameters I C-4
DDP parameters I C-6
RTMP parameters I C-8
AEP parameters I C-9
NBP parameters I C-9
ZIP parameters I C-10
ATP parameters I C-10
PAP parameters I C-11
ASP parameters I C-12
ADSP parameters I C-13
AFP parameters I C-13

Appendix D Character Codes I D-1

Glossary I G-1

Index I Index-1

xiv CONTENTS

Figures and Tables

Introduction I 1-1

Figure I-1
Figure I-2
Figure I-3
Figure I-4
Figure I-5
Figure I-6
Figure I-7
Figure I-8
Figure I-9

Network topology I I-8
LocalTalk network I I-10
AppleTalk internet I I-12
Direct printing I I-16
Printing with a spooler/server I I-17
Access privileges I I-18
AppleTalk protocol architecture I I-21
Interfaces and protocols I I-22
AppleTalk protocols and the ISO-OSI reference model I I-23

C HAP T E R 1 LocalTalk Ilnk Access Protocol I 1-1

Figure 1-1

Figure 1-2
Figure 1-3
Figure 1-4

Under dynamic node ID assignment, a new node tests its
randomly assigned ID I 1-5
LLAP frame and packet format I 1-7
LLAP transmission dialogs I 1-12
RTS-CTS handshake during a directed data transmission I 1-14

C HAP T E R 2 AppleTalk Address Resolution Protocol I 2-1

Figure 2-1
Figure 2-2

Multiple protocol stacks using a single link I 2-4
AARP packet formats I 2-12

C H A P T E R 3 EtherTalk and TokenTalk Link Access Protocols I 3-1

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5

SNAP packet format I 3-4
ELAP packet format I 3-5
TLAP packet format I 3-7
ELAP and TLAP multicast addresses I 3-10
AppleTalk-Ethemet or AppleTalk-token ring AARP packet
formats I 3-12

XV

CHAPTER 4 Datagram Delivery Protocol I 4-1

Figure 4-1
Figure 4-2
Figure4-3
Figure4-4

AppleTalk internet and internet routers (IRs) I 4-4
Socket tenninology I 4-11
DDP packet format (short header) I 4-15
DDP packet format (extended header) I 4-16

CHAPTER 5 Routing Table Maintenance Protocol I 5·1

Figure 5-1 Router configurations I 5-5
Figure 5-2 Router model I 5-6
Figure 5-3 Example of a routing table I 5-9
Figure 5-4 Split horizon example I 5-11
Figure 5-5 RTMP Data packet formats I 5-14
Figure 5-6 RTMP Request and Response packet formats I 5-18
Figure 5-7 Datagram routing algorithm for a router I 5-26

CHAPTER 6 AppleTalk Echo Protocol I 6-1

Figure 6-1 AEP packet format I 6-3

CHAPTER 7 Name Binding Protocol I 7-1

Figure 7-1
Figure 7-2

NBP packet format I 7-14
NBP tuple I 7-16

CHAPTER 8 Zone Information Protocol I 8-1

Figure 8-1 ZIP Query and Reply packet formats I 8-12
Figure 8-2 GetZoneList and GetLocalZones request and reply

packets I 8-14
Figure 8-3 GetMyZone request and reply packets I 8-15
Figure 8-4 GetNetlnfo request and supply packets I 8-17
Figure 8-5 ZIP Notify packet I 8-23

CHAPTER 9 AppleTalk Transaction Protocol I 9·1

Figure 9-1
Figure9-2
Figure 9-3
Figure9-4
Figure9-5

Transaction terminology I 9-4
Automatic retry mechanism I 9-5
Exacdy-once (XO) transactions I 9-7
Duplicate delivery of exactly-once (XO) mode I 9-8
Multipacket response example I 9-11

xvi FIG U RES AND TABLES

Figure9-6
Figure9-7

Use of SfS I 9-13
ATP packet format I 9-14

C HAP T E R 10 Printer Access Protocol I 10-1

Figure 10-1 Printing architecture I 10-3
Figure 10-2 Server states I 10-6
Figure 10-3 PAP OpenConn and OpenConnReply packet formats I 10-13
Figure 10-4 PAP SendData, Data, and Tickle packet formats I 10-14
Figure 10-5 PAP CloseConn and CloseConnReply packet formats I 10-14
Figure 10-6 PAP SendStatus and Status packet fonnats I 10-15

CHAPTER 11 AppleTalk Session Protocol I 11-1

Figure 11-1 ASP session-opening dialog I 11-6
Figure 11-2 Session-closing dialog initiated by the workstation I 11-7
Figure 11-3 Session-closing dialog initiated by the server I 11-8
Figure 11-4 Tickle packet dialog I 11-9
Figure 11-5 SPCommand dialog I 11-11
Figure 11-6 SPWrite dialog (error condition) I 11-12
Figure 11-7 SPWrite dialog (no error condition) I 11-13
Figure 11-8 SPAttention dialog I 11-14
Figure 11-9 SPGetStatus dialog I 11-15
Figure 11-10 ASP packet formats for OpenSess and CloseSess I 11-28
Figure 11-11 ASP packet formats for GetStatus I 11-30
Figure 11-12 ASP packet formats for Command I 11-31
Figure 11-13 ASP packet formats for Write I 11-33
Figure 11-14 ASP packet formats for WriteContinue I 11-34
Figure 11-15 ASP packet formats for Attention and Tickle I 11-35

CHAPTER 12 AppleTalk Data Stream Protocol I 12-1

Figure 12-1 Send and receive queues I 12-11
Figure 12-2 ADSP packet format I 12-13
Figure 12-3 ADSP data flow I 12-16
Figure 12-4 Recovery from a lost packet I 12-17
Figure 12-5 Idle connection state I 12-18
Figure 12-6 Connection torn down due to lost packets I 12-19
Figure 12-7 ADSP Attention packet format I 12-20
Figure 12-8 Connection-opening dialog initiated by one end I 12-25
Figure 12-9 Connection-opening dialog initiated by both ends I 12-26

Figures and Tables xvii

Figure 12-10 Open-connection request denied I 12-27
Figure 12-11 Open-connection packet format I 12-29
Figure 12-12 Connection-opening dialog: packet lost I 12-30
Figure 12-13 Simultaneous connection-opening dialog: packet lost I 12-31
Figure 12-14 Connection-opening dialog: half-open connection I 12-32
Figure 12-15 Connection-opening dialog: data transmitted on half-open

connection I 12-33
Figure 12-16 Connection-opening dialog: late-arriving duplicate I 12-34
Figure 12-17 Open-connection request made to connection-listening socket;

alternate socket chosen for connection I 12-36
Figure 12-18 Connection-opening filters open connection denied I 12-37
Figure 12-19 Connection-opening filters with a connection-listening

socket I 12-38

CHAPTER 13 AppleTalk Filing Protocol I 13·1

Figure 13-1
Figure 13-2
Figure 13-3
Figure 13-4
Figure 13-5
Figure1~
Table 13-1

The AFP file access model I 13-5
AFP and the AppleTalk protocol architecture I 13-7
The volume catalog I 13-13
ProDOS information format I 13-18
CNode specification I 13-23
Example 1 of a volume catalog I 13-25
Synchronization rules I 13-37

C HAP T E R 14 Print Spooling Architecture I 14-1

Figure 14-1
Figure 14-2
Figure 14-3
Figure 14-4
Figure 14-5

Figure 14-6

Configuration for printing without a spooler I 14-4
Configuration for printing with a spooler/server I 14-7
Protocol architecture for printing without a spooler I 14-8
Protocol architecture for printing with a spooler/server I 14-9
Protocol architecture for alternate spooling
environments I 14-11
Protocol architecture for spooler/server queue
management I 14-17

xviii FIGURES AND TABLES

A P P E N D I X A LocalTalk Hardware Spedflcations I A-1

FM-0 encoding I A-2
LocalTalk connection module I A-4

FigureA-1
FigureA-2
Figure A-3
Figure A-4
Figure A-5
Figure A-6

Connector pin assignment (looking into the connector) I A-5
Interconnecting cable connection I A-5
Transformer specification I A-6
Schematic and build detail I A-7

A P P E N D I X C AppleTalk Parameters I C-1

Figure C-1 LLAP type field values I C-3
Figure C-2 Zone multicast addresses I C-5
Figure C-3 DDP type field values I C-7
Figure C-4 DDP socket numbers I C-8

APPEND I X D Character Codes I D-1

Table D-1
Table D-2

Character set mapping used in AppleTalk I D-2
Lowercase-to-uppercase mapping in AppleTalk I D-3

Figures and Tables xix

Acknowledgments

EVEN T H 0 UGH Inside AppleTalkwas published by Addison-Wesley as
recently as early 1989, the needed evolution of technology has already made it
necessary to produce a new edition! In fact, even while we were in the final
editing and production stages of the first edition, our engineering teams were
busy implementing a major extension of the network system, now known as
AppleTalk® Phase 2. This extension was introduced in june of 1989, and its
various components are now in users' hands. This second edition includes all
changes made to the protocols to implement the enhanced capabilities of
AppleTalk Phase 2.

It is my privilege to acknowledge the contributions of many of the
finest networking engineers in the industry in this endeavour. Jim Mathis,
who has been involved with network systems design since the advent of
TCP (Transmission Control Protocol) in his university days at Stanford,
worked with me on the early architectural design of Phase 2, critiquing and
suggesting amendments to the design. The refinement and translation of
that design into an actual implementation was done by a team under the
leadership of Alan Oppenheimer, who is a co-author of this book. Major
contributions were made by several members of Alan's staff-I would like to
make special note of Sean Findley, Louise Laier, Kerry Lynn, and Mike Quinn.
These engineers par excellence have built a new version of the system in the
face of the enormous challenge of maintaining compatibility with existing
Apple Talk applications. The results have been simply extraordinary. Whereas
the original AppleTalk system had a size limitation of at most 254 devices
connected to a single network, the new design extends this limit to
approximately 16 million devices. The owner of the network system has
enhanced flexibility in distributing these devices on the various networks that
comprise the internet. Much care has been devoted to minimizing the use of
network bandwidth for the system's internal coordination, such as routing
table maintenance.

xxi

The AppleTalk network system now offers an even greater range of
connectivity options than before, encompassing all the most important
physical and link-level technologies, such as LocalTalk™, Ethernet®, and token
ring. But more importantly, it has established a much-envied level of ease of
use, pushing network arcana into the distant background of the user's
experience. Although within Apple® this ease of use is now taken for granted,
we should take note of what our customers think. They have voted with
their pocket books and the result is an installed base that is variously
estimated by a variety of independent services at between 2 and 3 million
connections. This market place reality might provide sufficient basis for us to
view AppleTalk as a de facto standard, standing in the company of stalwarts
like SNA (Systems Network Architecture) and DECnet™. Even developers,
Apple's close partners in the success of our products, have indicated their
interest in this system by buying an unexpectedly large number (approaching
10,000) of copies of Inside AppleTalk, and this despite its being a deeply
technical book. We at Apple are beholden to them for their support.

In the first edition, I acknowledged Apple's deep gratitude to a
distinguished line of third-party supporters of AppleTalk. I would like to add
a special personal note of thanks to Guy Riddle, recently appointed Bell Labs
Fellow, for enthusiastically and single-handedly incorporating AppleTalk into
AT&T's product offerings.

I would like to extend my appreciation for the special efforts of the staff
in Apple's Networking and Communications Publications department.
Thanks go to judy Helfand, editor; joyce Zavarro, art director; Debbie
McDaniel, production editor; Ron Morton, production assistant; Robin Kerns,
fllm and print supervisor; and Patrick Ames and Rani Cochran.

Don Casey, who joined Apple in 1988 after a long and distinguished career
at IBM, has made enthusiastic private and public observations on the
AppleTalk network system. Coming from a veteran of the industry, these
have been a source of much joy to me. He has my appreciation for his kind
thoughts and, somewhat torigue in cheek, my admiration for his good taste.

xxii ACKNOWLEDGMENTS

Gursharan S. Sidhu
january 1990

Acknowledgments to First Edition

T H E D E V E L 0 P M E N T of the Apple Talk network system spans more
than a five-year period. Although the authors of Inside AppleTalk were the
key players in the system's design, many others helped in numerous ways.

Without a doubt, the genesis of AppleTalk is to be found in the
demanding and uncompromising questioning of Steve Jobs. In particular, at
the National Computer Conference (NCC) in Anaheim in 1983, he asked me the
key question: "Why has networking not caught on?" My awkward attempts
to answer his question started us on this venture. Invention always has its
instigator, and Steve played this role for AppleTalk as he has for many other
wonderful products from Apple. I owe a great personal debt to him for first
listening to my fervent but not yet fully formed vision of networks as
empowering extensions of the personal computer and for later helping
remove barriers from our developmental path.

Bob Belleville, former engineering director of the Macintosh® Division
and ever a pragmatist, converted the vision into three succinct memos that
put a stop to ail argument on this issue at Apple. He provided a focus for this
nascent activity, including the general goals for LocalTalk (then known as
AppleBus), the LaserWriter® printer, and the system's file server. Although
the actual products turned out considerably different from what he indicated
in those memos, he summarized the target area with consummate simp 'city.

The most exciting activity of the last quarter of 1983 and the first few
months of 1984 was the development of the LocalTalk Link Access Protocol
(LLAP). This protocol is the basis of LocalTalk and related connectivity
implementations from several vendors, including PhoneNET from Farrallon
Computing and Fiber Optic Communication Card from Du Pont Electronics. I
wish to acknowledge several colleagues at Apple who played key roles in this
difficult design activity: Ron Hochsprung and Larry Kenyon for their very
creative design participation, George Crow for the superb analog design of the
LocalTalk hardware, and Jim Nichols for an uncompromising test harness that
proved that the design was efficient and stable.

xxiii

The AppleTalk protocol architecture almost did not happen. Bob Belleville
proposed an external, device-interconnect bus for the then-closed Macintosh
personal computer. Creating a network system was my somewhat
clandestine idea; when I described the network architecture to Bob on
January 24, 1984, about two hours afte1 the Macintosh introduction, I did so
with some trepidation. I am grateful to him for his forthright admission that
I had made AppleTalk into something much more comprehensive than he had
anticipated and for his full support!

In its early days, any new idea is tender and vulnerable. I am especially
grateful to Ed Taft of Adobe Systems, one of the most widely known
members of the networking community, for his very thorough review and
his advice in late 1983 and early 1984. His extremely encouraging comments
bolstered my own commitment to build this system; without his
encouragement, compromises to "conventionalism" might have crept in.

It was all very well to have the approval of fellow designers of network
systems, but the proverbial proof-is-in-the-pudding was still missing: How
would users of the system respond to it? Stan Dunton and Rich Brown of
Dartmouth College provided a crucial vote of confidence in early 1984 with
their decision to install AppleTalk as their campus-wide system. I will be
eternally grateful to Stan for standing up at the flrst AppleBus Developers'
Conference and saying: "This is just the system we've been waiting for
someone to design. n

My biggest debt of gratitude is to Rich Andrews and Alan Oppenheimer,
who have been my technical partners in this venture from the beginning. The
credit for the outstanding reliability of the Macintosh AppleTalk drivers goes
to Alan's meticulous attention to detail in writing them. They are a model of
how an efficient and tight implementation of network protocols can be
achieved in a difficult environment.

The elegant design of the AppleTalk Transaction Protocol (ATP) exactly
once packet exchange is the contribution of Rich Andrews. Rich listened to
my somewhat unconventional ideas about not building a general stream
protocol but relying instead on transactions. I then suggested at-least-once
and exactly-once service. My exactly-once proposal, however, was
considerably clumsier than Rich's modification, which has become integral to
millions of Macintosh and LaserWriter ROMs.

xxiv A C K N 0 W LED G M EN T S T 0 F I R S T ED IT I 0 N

One of the impressive services in the AppleTalk system is provided by the
AppleShare® me server, which was many years in the making. Rich Andrews
has been my partner in this venture throughout. I wish to thank him for his
tremendous effort in the face of considerable adversity and public
opprobrium. His persistent, dogged work toward the final AppleShare
product has earned him the title of Apple Hero.

Rich and Alan join me in thanking all our colleagues in Apple's Network
Systems Development (NSD) group; in particular, we would like to mention a
few veterans: Pat Dirks, Bruce Gaya, Rick Hoiberg, and Gene Tyacke. Tim
Warden and Steve Schwartz made significant contributions to the chapters on
the AppleTalk Data Stream Protocol (ADSP) and the Printer Access Protocol
(PAP), for which they have my appreciation and thanks.

Since 1985, the NSD group has enjoyed the support and encouragement of
Ed Birss and Jean-Louis Gassee. Both have become strong converts to our
dream of extending the power of the individual beyond the desk top.

The unsung key contributors to a system such as AppleTalk are the third
party developers who have risked their investment funds to add end-user
value. They kept AppleTalk alive when many thought it was just a printer
cable. I wish to acknowledge, as representative of this group, the following
key entrepreneurs: Evan Solley of Infosphere for the first AppleTalk disk
server product; Andrew Singer, formerly of Think Technologies, for the InBox
electronic mail service; Alex Gernert, formerly ofTri Data, for the Netway 1000
SNA connectivity server; Rob Ryan of Hayes Microcomputer Products, Inc.
and Tim McCreery of Kinetics for their AppleTalk routers; Reese jones of
Farallon Computing for the PhoneNET implementation of LocalTalk service;
and Bob Denny of Alisa Systems for the implementation of Apple's
AppleTalk for VMS software.

Lest other good developer friends take umbrage at my not mentioning
them specifically, I plead the impracticality of producing an exhaustive list;
they know the depth of my gratitude-and that of the users-to all of them.
This large body of third-party developers is a measure of the broad acceptance
of the AppleTalk system.

Protocol specifications of the Apple Talk system have been provided to
developers in several versions starting with the "AppleBus Developer's
Handbook" of March 1984. It was my intention to publish it as a book, but
we grossly underestimated the effort involved. It was not until August of
1988 that we assembled some of Apple's fmest editors, production editors,

Acknowledgments to First Edition XXV

and desktop publishers to pull together all the pieces that comprise this book.
I am indebted to Judy Bligh, editor; Judi Seip, art director; Sheila Mulligan; Ron
Morton; Roy Zitting; Debbie McDaniel; Luann Rugebregt; and Patrick Ames.

Finally, I would like to dedicate this book to the patience and
understanding of my wife, Elvira, who endured the many nights when I
paced the floor while struggling with some protocol problem.

:xxvi A C K N 0 W LED G MEN T S T 0 FIRST EDIT I 0 N

Gursharan S. Sidhu
November 1988

Introduction

CONTENTS

Network systems I I-4

Protoco~What are they? I I-4

AppleTalk I I-4
Why did we design it? I 1-5
Key goals of the AppleTalk architecture I 1-6

Versatility I l-6
"Plug-and-play" capability I I-6
Peer -to-peer architecture I I -6
Simplicity I I-7
Link independence I 1-7
Seamless extension of the user's computer I l-7
Open architecture I l-7

The AppleTalk network system I I-8
AppleTalk connectivity I I-9

LocalTalk I l-10
EtherTalk I l-11
TokenTalk I l-11
Routers and AppleTalk intemets I 1-12
Datagrams and network visibility I l-13
Names, addresses, routes, and zones I l-13
AppleTalk and reliable data exchange-uansactions and streams I 1-14

AppleTalk end-user services I 1-15
AppleTalk printing services I 1-15
AppleShare and AppleTalk file service I 1-17

AppleTalk protocol architecture
and the ISO-OSI reference model I 1-20

1-1

AppleTalk Phase 2 I 1-24

Thoughts of the future I 1-25
Scope I 1-25
Reach I 1-25

About Inside Apple Talk I 1-26

Typographic and graphic conventions used in this book I 1-27

Where to go for more information I 1-28
AppleTalk I 1-28

•

General nerworking I 1-28
Data links I 1-28
Connection-oriented protocols I 1-29
PostScript I l-29
ISO-OSI reference model I l-29
Database access I 1-29

1-2 I NTRO D UC TI 0 N

T H I S B 0 0 K P R 0 V I D E S the internal design details of the

AppleTalk® network system. As such, it is intended for those who are not

content merely with being users of the system but who would like to go

behind the scenes. Inside Apple Talk is designed to meet the needs of those

interested in understanding AppleTalk network technology. Distinguished

among this group are developers wishing to connect devices to this network

system or to write computer programs that use its services.

Readers are not required to have a detailed knowledge of network systems.

Those generally familiar with the design of computing systems should be

able to grasp the material presented here. •

Introduction 1-3

Network systems
The basic goal of computer network systems is to eliminate access barriers that result from the
geographical and physical separation of various devices and the resources they embody. Network
systems are the essential basis of distributed computing.

Computer network systems consist of computing components and connectivity components.
Computing components include computing devices, such as personal computers, minicomputers, and
mainframe computers, and special seroer devices, such as file servers and print servers. These devices
are connected through a variety of cables, other data channels, and routing and gateway
components, which collectively are the connectivity components of the system.

Protocols-What are they?
The effective operation of any distributed system, of human beings or of devices, is based on
underlying rules that prescribe the nature and fonn of the permitted and accepted interactions. In
the world of diplomacy, these rules are known as protocols.

Similarly, computer networks operate on the basis of carefully designed and scrupulously
enforced rules of interaction-also called protocols-between the network system's
interconnected devices. Internal descriptions of such systems consist mainly of discussion and
specification of the protocols, their objectives, and their interactions. This collective of information
is known as the protocol architecture of the network system.

Inside AppleTalk defines and describes AppleTalk's protocol architecture. To understand
AppleTalk's design fully, one must also examine its topological architecture, which is concerned
with the manner in which the connectivity of the network system is implemented.

Not all aspects of AppleTalk protocols are covered in this book. Some issues, such as network
management and gateway protocols, will be examined in companion volumes. Likewise, protocols
for database access and for page description are discussed elsewhere.

AppleTalk
AppleTalk is a comprehensive network system designed and developed by Apple Computer, Inc. It
consists of many different kinds of computer systems and servers and a variety of cabling and
connectivity products.

I-4 I N T R 0 D U C TI 0 N

This system was designed as an integral part of Apple Computer's mission to provide greater
power to the individual through computer technology. The ultimate objective was to go beyond
personal computers to interpersonal computing. The cornerstone of this vision is the Macintosh®
family of personal computers. These computers allow users to directly manipulate and use various
capabilities and resources through an elegant, aesthetic, and empowering user interface. The
AppleTalk network system was envisioned as a natural and seamless extension of the Macintosh
beyond the confmes of the user's desk top, allowing the individual to gain access to remote
resources and to interact with other users through personal computers.

Why did we design it?

When this design activity was initiated in late 1983, many barriers prevented the widespread
adoption of network technology. No one doubted networking's vast promise; yet its acceptance
was proving slower than anticipated.

It was expensive (approximately $1000 for each computer) to connect a computer to network
systems. This high cost, acceptable for minicomputers and mainframes, seemed prohibitive for the
personal computer (itself priced around $1000). Furthennore, the services received by users who
decided to pay the high initial price were limited.

More importantly, network systems were foreign appendages, conceived independently of
computers and then only as an afterthought. Networks appeared to be celebrations of technology
designed with more attention to such issues as data transmission speed than to user convenience.
Users of network services had to learn the idiosyncrasies of each particular network. Access to
resources through the network had to be obtained in a manner different from that used for local
resources resident on the user's computer. The network constituted a hindrance when it should
have extended the user's reach.

We could not use existing network protocol architectures to achieve our goal of seamlessly
extending the user's computing experience. We chose instead to develop our own architecture in
which we would utilize standard technology where appropriate and innovate freely where
necessary.

AppleTalk 1-5

Key goals of the AppleTalk architecture

AppleTalk was developed to be a general-purpose network system that pays special attention to
the needs of personal computers and their users. In designing Apple Talk's protocol architecture, we
had a number of key goals.

Versatility

The system should serve as the basis for a broad variety of applications, ranging from an external
bus for attaching a few peripheral devices to a single Macintosh computer, to a network system
connecting thousands of computer systems dispersed over a potentially wide area. Our objective of
having a general-purpose design for AppleTalk made it imperative that we carefully cons£ruct the
protocols with an eye to future, as-yet-undefined applications.

Computer networks are among the most promising technologies for bridging the operating
system incompatibilities of the diverse types of computers in use today. The most valuable
resource in these systems is the information generated by users. Network technology should allow
users to exchange and share this information without concern for the special format and internal
idiosyncrasies of dissimilar computer systems.

To achieve this goal, the network system must be designed from its inception to allow any
type of computer to participate as an equal-and to the best of its ability.

"Plug-and-play" capabillty

The user should be able to plug a computing device into a network system and use it immediately
without any of the complications of configuration. This "plug-and-play" capability, pioneered in
AppleTalk, has now come to be a much-sought-after convenience of network systems. Several
features of AppleTalk protocols make this possible (for example, the dynamic address-acquisition
capability and the use of automatic name lookup to obtain access to network resources).

Peer-to-peer architecture

The network system's architecture should avoid centralized control. Such control would not only
increase the initial entry cost of the network system but also create a single point of failure.
Furthermore, centralized control can adversely impact efficiency and in several ways reduce the
user's personal control over network resources.

AppleTalk protocols are peer-to-peer in s£ructure, and the communicating entities operate as
equals when interacting.

I-6 I NT R 0 D U C T I 0 N

Simplicity

The protocols should be simple and easy to implement. Simplicity is essential if small, limited
memory and limited processing-power devices are to operate successfully on the network.
Furthermore, simpler protocols can reduce network overhead and thus enhance performance and
efficiency.

This simplicity of design and the resultant small size of network software also make it
economically feasible to build network software into all computing devices, whether or not the
user intends to connect the devices to a network.

Link independence

Each computing device should be able to use future technologies without the major costs of
redesigning the protocol architecture and refitting ROMs and system software. Communications
technology will continue to advance rapidly, offering new, as-yet-unforeseen interconnect
hardware.

The protocol architecture had to be independent of the physical link. This decision has allowed
us to include in the AppleTalk system a variety of physical-link options. We have introduced, for
example, the use of Ethernet, token ring, and other physical-link technologies without any change
to the architecture.

Seamless extension of the user's computer

Although the protocol architecture has not been designed for a particular type of computer, special
attention was paid to the integration of the network system with the user's computer. In
particular, the Desktop interface of the Macintosh was maintained across the network system.
Making the network system transparent is central to a smooth extension of the user interface of
the Macintosh, especially its direct manipulation capability.

Open architecture

The protocol architecture should be kept open so that any developer, Apple or third-party, can gain
access to the services of any protocol in the architecture. But, more importantly, new protocols can
be added to the architecture at any point.

Openness is essential if the architecture is to be extended or modified over its lifetime. Third
party developers can add protocols to build special services not contemplated by the designers of
AppleTalk. For example, although AppleTalk has not included standards for electronic messaging/
mail, various third-party vendors have been able to design and add such capability independently.

AppleTalk I· 7

The AppleTalk network system
AppleTalk is a comprehensive network system that runs on a variety of data transmission media
using various data-link methods. It facilitates communication between network devices, such as
users' computers, file servers, and printers, which may be a mixture of Apple and non-Apple
products. Several elements make up an AppleTalk network system: AppleTalk software and
AppleTalk hardware; the Iauer includes computing components and connectivity components.

The AppleTalk software implements the AppleTalk protocols in each device connected to the
system.

The network devices and cabling methods comprise the physical or hardware components of
an AppleTalk network system. The layout of a network is called its topology, that is, the
arrangement of the devices and cables of the network system (see Figure 1-1).

• Figure 1-1 Network topology

Conference
room

Richard

1-8 IN T R 0 DUCT I 0 N

Empty
To be hired

Empty
To be hired

Gavin

Empty
To be hired

Cynthia

Vahl

On a typical network, the majority of the devices, known as network nodes, will be users'
personal computers. Other network nodes could be operating, for example, as ftle or print setvers or
as routers and gateways.

AppleTalk connectivity

The first step in designing a protocol architecture is to build its connectivity infrastructure-the
communication hardware and the associated protocols for controlling access to the hardware links.

Apple Talk's design allows users to include a variety of data-link and cabling methods in a
network system. In fact, an AppleTalk network can be set up using any of the widely available
cabling and data-link technologies. Current widely used AppleTalk data-link and cabling methods
include LocalTalk™; EtherTalk®, using standard Ethernet media; TokenTalk, using token ring; and
LANSTAR AppleTalk, using Meridian LANSTAR media.

These different links can be interconnected in the AppleTalk system via routers to build very
large local or geographically dispersed internets. The different links used in any particular portion
of an Apple Talk internet can be chosen by the user according to the expected traffic, distance, and
desired response characteristics in that portion of the internet.

Users can install low-cost, twisted-pair LocalTalk cabling when 230.4 Kbits/second bandwidth is
sufficient. Higher-cost and higher-speed EtherTalk can be installed when full tO Mbits/second
performance is required and when the increased cost is acceptable. Likewise, wide-area links such as
telephone lines can be used to extend the geographical reach of an AppleTalk network.

The cabling used in a particular portion of an AppleTalk network system can be viewed as a
data highway shared by the connected network nodes. The associated data-link technology
provides the protocols necessary to share that particular highway. This data-link technology
consists of two principal portions: the media-specific or physical protocol and the data-link access
protocol.

The physical protocol specifies physical aspects of the data link, such as how a data bit is
encoded or modulated for transmission on the particular medium. For instance, on a fiber-optic link
a bit is to be converted into a pulse of light of specified waveform, wavelength, and duration. In
the case of electrical links, the impedance characteristics, signal strengths, and frequencies are
specified by the physical protocol.

Data-link access protocols are concerned with the logistical aspects of sending the data packet
through the physical medium over a potentially shared link. These protocols have several basic
goals, such as addressing, error detection (in some cases, error recovery), and medium access control.

The AppleTalk network system I-9

LocalTalk

The Apple LocalTalk product connects local work groups using inexpensive (typically under $100 per
computer), easily configurable cabling to link workstations and other computing devices in an
AppleTalk network system. LocalTalk is ideal for small, local work groups in which modest data
transfer rates are acceptable. It provides a price-performance point unmatched by any other
connectivity product in the industry.

Since the transmitter and receiver hardware for LocalTalk is built into every Macintosh and
Apple IIGs® computer, LaserWriter® printer, and many peripheral devices, setting up the network is
a simple process of connecting the devices with appropriate user-installable cabling and connectors.
LocalTalk hardware is also available for Apple® lie and MS-DOS computers, and for Image Writer® II
and Image Writer LQ printers.

As shown in Figure /-2, LocalTalk is laid out in a bus topology, meaning that all devices are
joined in a line with no circular connections. The physical characteristics of the LocalTalk twisted
pair cable allow it to reliably support a recommended maximum of 32 devices. A single LocalTalk
network can span up to 300 meters.

The operation of a single LocalTalk network is managed by the LocalTalk Ilnk Access
Protocol (LLAP). LLAP was developed with the following goals:

11 to build a low-cost, physical link

11 to allow plug-and-play operation

LLAP is the data-link access protocol used to deliver data packets from any node of a LocalTalk
network to any other node on that network. It makes a "best effort" to deliver the packet but
does not guarantee its delivery. However, LLAP does ensure that if a packet is delivered it will be
free of errors. The detailed specification of LLAP is provided in Chapter 1, Appendix A, and
Appendix B.

LLAP includes a dynamic address-acquisition method that is crucial to the plug-and-play nature
of the AppleTalk system.

The physical protocol governing the operation of LocalTalk is summarized in Appendix A.
Several third-party vendors have implemented data links based on LLAP but have used different

• Figure 1-2 LocalTalk network

T I !
(q
I =I

~
1-10 INTRODUCTION

ItJITt

physical media. Notable among these are PhoneNET from Farallon Computing and the Du Pont
Electronics Fiber Optic Communication Card for the Macintosh II. PhoneNET is an alternative
implementation of LocalTalk functionality on standard, twisted-pair telephone cabling connected in
a star topology with a central hub; the Electronics Fiber Optic Communication Card uses LLAP but
with a different physical protocol from LocalTalk.

An AppleTalk data link other than LocalTalk is implemented using additional hardware, such as
an interface card, and appropriate software. Two commonly used media are Ethernet and token
ring. These alternative AppleTalk links do not use LLAP. Since their addressing schemes are different
from those expected by the AppleTalk protocols, it is necessary to translate the AppleTalk node
addresses into the addresses used by the particular link. This translation is carried out by using the
AppleTalk Address Resolution Protocol (AARP) specified in Chapter 2.

EtherTalk

The Apple EtherTalk product provides high-speed connection of computing devices in the
AppleTalk network system. It uses standard Ethernet technology including thick or thin coaxial
and twisted-pair cabling with data transmission at 10 Mbits/second. This high-bandwidth medium
is desirable for network segments that carry heavy traffic or require very agile response
characteristics.

When used in an AppleTalk system, EtherTalk's faster transmission speed results in better
performance. Furthermore, EtherTalk can support as many concurrently active AppleTalk devices as
can be connected to an Ethernet network.

EtherTalk relies on an extension of the Ethernet data-link protocol that uses AARP. This
extended protocol, known as the EthetTalk Unk Access Protocol (ELAP), is specified in Chapter 3.

TokenTalk

The Apple TokenTalk® product provides connection to industry-standard token ring networks. It
uses token ring technology to provide access to token ring networks. TokenTalk is desirable for
those environments already using token ring cabling for other purposes, such as access to
mainframe computers.

Like EtherTalk, Token Talk can support as many concurrently active Apple Talk devices as can be
connected to the token ring network.

TokenTalk also uses AARP to extend the underlying data link. This extended data link protocol
is known as the TokenTalk Unk Access Protocol ('fLAP), and is described in Chapter 3.

The AppleTalk network system I-ll

Routers and AppleTalk intemets

Large and geographically dispersed AppleTalk network systems can be built using the data-link
products available for AppleTalk to interconnect the various networks through routers. The
resulting system is called an AppleTalk internet, as shown in Figure 1-3.

• Figure 1-3 AppleTalk internet

• • •• • •

Rourcr j . . . :

Router

Backbone l==~§"bdl=========:::!.l
network

• Router
• •

1-12 INTRODUCTION

i ~

An Apple Talk router is a computer that is connected to each of the Apple Talk networks it
interconnects. Routers operate as store-and-forward devices. Each network of the internet is
assigned a unique range of numbers known as its network numbers, and every AppleTalk data
packet traveling across an internet includes a network number in the range of the destination
network. By consulting this number, routers are able to forward the packet from router to router
until it arrives at its destination network. There the appropriate data link delivers the packet to the
destination node.

Routers forward data packets by consulting tables of routing information. The initial
acquisition of a routing table and its continuous maintenance are carried out by routers using the
Routing Table Maintenance Protocol (RTMP) specified in Chapter 5.

Datagrams and network visibility

Apple Talk extends the node-to-node packet delivery service of the various individual links and the
routers to a process-to-process, best-effort delivery. Thus, the various processes operating in the
nodes of an internet can exchange data packets. The basis of this service is the Datagram

DeHvery Protocol (DDP) specified in Chapter 4. DDP provides the processes with addressable
entities known as sockets. Processes can attach themselves to one or more sockets within their
respective nodes and then exchange packets with each other through these sockets. The data
packets exchanged through this DDP service are known as datagrams. Datagram delivery is the
key service of the AppleTalk architecture upon which other value-added services are built.

Once a process has attached itself to a socket, it is then accessible from any point in the
AppleTalk network system. It is said to be a network-visible entity (NVE).

Names, addresses, routes, and zones

The identification of available network entities is fundamental to the construction of network
services and distributed computing applications. Three basic concepts are germane to this
discussion-names, addresses, and routes. An entity's name can be seen as an attribute that is a
location-independent, usually unique identifier of a network entity, much like names in the
everyday world. An entity's address provides information related to its location, while a route is an
actual path that data will have to traverse to reach the entity.

Users are comfortable with the use of names, but they prefer that addressing and routing be
attended to automatically by the network system. Thus AppleTalk provides a service to let any
network-visible entity give itself one or more names. Then the user of the network can discover
the existence of that entity through a standard AppleTalk mechanism. The actual conversion of the
name into an address is automatically done by the appropriate software in the user's computer,
without the user's intervention. Access to the entity is provided by the software by using this

The AppleTalk network system 1-13

address and the routing capabilities of DDP and RTMP built into all nodes. The named-entity
discovery and address conversion is provided by the Name Binding Protocol (NBP) discussed in
Chapter7.

Very large internets could present the user with long, clumsy lists of network-visible entities.
To help organize these long lists, AppleTalk internets can be subdivided into AppleTalk zones.
Name searching can then be done within one or more user-specified zones. This added
organizational convenience is enabled by the Zone Information Protocol (ZIP) discussed in
Chapter 8. The zone structure and the name-lookup process require the close interaction of end
nodes and routers. This interaction is governed by NBP and ZIP.

Many network systems provide a naming service through the use of centralized repositories
known as name servers. Every named entity must register its name and address with the name
server. The server then helps other network nodes to discover and address the named entities of
the system. An important consideration in the design of AppleTalk was that it not require
dedicated name servers. Requiring such servers would dramatically increase the entry cost and
installation complexity of the network system. For small network systems, name servers may not
add much value. NBP neither precludes the use of name servers nor provides the services needed for
their management.

AppleTalk and reliable data exchange-transactions and streams

DDP provides a best-effort packet-delivery service. Datagrams still could be lost or damaged in
transit through the internet. To ensure reliable, end-to-end delivery of these packets, AppleTalk
includes a variety of protocols, each with different capabilities.

The AppleTalk Transaction Protocol (A TP) provides a reliable packet exchange in the form
of request-response pairs (see Chapter 9). Packet exchange transactions of this nature are central to
the interaction of a user with a server such as a file server. The AppleTalk Session Protocol
(ASP) extends the ATP service by allowing two processes to exchange a sequence of transactions
reliably (see Chapter 11).

The AppleTalk Data Stream Protocol (ADSP) allows two processes to open a virtual data
"pipe" between their sockets. Either process can write data bytes into the pipe and read data bytes
from it (see Chapter 12). Data bytes written into an ADSP pipe are delivered reliably at the other end
in the exact same order.

Those readers familiar with network systems have come to expect the key reliable data
transfer service of a network system to be a connection-oriented data stream or virtual circuit.
AppleTalk's heavy use of transaction protocols in lieu of stream protocols might surprise them.

stream services are implemented on packet networks at the cost of considerable protocol
overhead. However, stream protocols are a natural extension of physical connections used in most
data communication applications. These virtual circuit services emulate familiar capabilities and are

1-14 INTRODUCTION

readily accessible to and used by programmers. These users often employ such streams, however,
to implement a client-server interaction, which is of a request-response transaction nature. The
programmer has to add overhead to undo the stream service, in effect, and to convert it back to a
transaction service. With ATP/ASP, AppleTalk avoids the double overhead of first extracting stream
service from a packet-oriented system and then converting it back to a transaction service.

Stream services of ADSP are included in the architecture for two reasons: first, as a convenience
to programmers familiar with such services in other network systems; second, to provide the
natural data transport service for implementing capabilities such as terminal emulation and file
transfer. ADSP will also prove useful for gateways that provide end-to-end connection services
between AppleTalk nodes and nodes on other network systems.

AppleTalk end-user services

AppleTalk was designed to be a foundation for interpersonal computing. Two fundamental end
user services developed for this purpose are shared printing and shared filing. The key AppleTalk
printing products are the ImageWriter and LaserWriter families of printers. Further printing
convenience is provided by the PrintMonitor and AppleShare® print server spooling capabilities. File
sharing services are implemented as a seamless extension of the Macintosh Desktop in AppleShare,
which provides AppleTalk file service.

AppleShare is designed to be a sharing platform for a variety of user computers, including the
Macintosh, MS-DOS, and Apple II families. In particular, it serves as the basis for Apple's popular
classroom network system used by students from kindergarten through the university.

Publication of the protocols on which these products are based has allowed third parties to add
other printing and file serving devices that are compatible with Apple's products. This compatibility
ensures a uniform user experience across a range of products with different price, performance, and
capability characteristics. For instance, AppleTalk users can write documents on their Macintosh
computers and use an Apple LaserWriter to print them during the development process. After the
document has been fully developed, the user can print it on higher-resolution typeset equipment in
exactly the same manner as on the LaserWriter.

Likewise, Macintosh users can gain access to files stored on any V AJClM-resident, AppleShare
compatible file server such as AlisaShare or PacerShare in exactly the same way as files stored on an
AppleShare file server (or, in fact, on the user's local disks).

AppleTalk printing services

Printing on an AppleTalk network is possible with several different hardware and software
configurations. AppleTalk networks support both direct printing and printing with a spooler.

The AppleTalk network system 1-15

Direct printing

Direct printing occurs when a workstation sends a print job directly to a printer connected to the
network system, as shown in Figure J-4.

When a user issues a command to print a document, the application begins a series of Apple Talk
calls attempting to establish a connection to the printer. The calls first initiate NBP's name-lookup
process to find the currently selected printer and its AppleTalk address. Then the Printer Access
Protocol (PAP) is used to open a connection with the printer.

Once the connection is established, the workstation and the printer interact over the PAP
connection. PAP uses lower-level protocols, such as ATP and DDP, to provide a data-stream service
for sending the print data to the printer. For a detailed specification of PAP, see Chapter 10.

Printing services on AppleTalk can also be implemented through ADSP.

• Figure I-4 Direct printing

Printing with a print spooler

A print spooler is a hardware or software application that interacts with a printer to print
documents. When a computer sends a file to be printed, the print spooler intercepts the ftle and
handles all printer interaction, freeing the computer for other tasks. Two types of spooler
implementations are used with AppleTalk: a background spooler and a spooler/server.

D

A background spooler is a software application that operates in the user's computer as a
background process and spools print jobs to the user's local disk. An example of an application that
allows background printing is the PrintMonitor application included with the Macintosh
MultiFindern.1•

A spooler/server is an application that runs on a computer set up to be a print spooler and
connected to the AppleTalk network system (see Figure I-5). A spooler/server works by setting
itself up as a surrogate printer; that is, when the computer tries to print, it sees the spooler/server
as a printer and, in fact, cannot distinguish it from a printer. When the user prints, the user's
computer produces the print data and sends it to the spooler/server. Since the spooler/server stores
the print data in its hard disk, it is able to quickly accept this information from the user's computer,
which is freed for other use. The spooler/server then takes charge of the more time-consuming task
of getting the data processed by the printer.

1-16 I NT RODUCT IO N

• Figure 1-5 Printing with a spooler/server

D

Work>t:uions Spooler/sen cr Printer>

Laser\Vriter and other printers accept only one job, or connection, at a time. Spooler/servers can
accept several connections at a time, thereby minimizing the contention problems that occur when
several workstations try to print simultaneously. AppleShare includes a spooler/server for printing
on any Apple-supplied AppleTalk printers and on compatible third-party printers.

AppleTalk print spooling is more fully discussed in Chapter 14.

AppleS hare and AppleTalk file service

Within an AppleTalk network system, the AppleShare flle server provides a location where a user on
the network can store and gain access to common files without disrupting other users' activities.

Using AppleShare File Server software, a Macintosh computer with one or more hard disk drives
can become a dedicated file server on the network. Each hard disk attached to the AppleShare ftl.e
server is called a volume.

To be able to use an AppleShare file server, a user is registered on the server, given a password,
and placed into one or more user groups, as appropriate. Gaining access to the file server involves a
login process in which the server asks for the user's identification, consisting of a user name and a
password. Once the server has examined its registered user database and validated the user, the
selected server volumes' icons, much like a hard disk icon, appear on the user's Macintosh Desktop.

The login process assures confidentiality; users must be registered and must enter a password
before being able to gain access to protected portions of server volumes. Unregistered users can log
in as guests; that is, they can obtain access to information that is unprotected.

The AppleTalk network system 1-17

Within a server volume, files are stored in folders. Folders on a Macintosh are analogous to
directories on an MS-DOS or tJNIX® computer; both folders and directories are named entities that
hold ftles or other folders/directories. Opening and saving files and creating folders are done the
same way on a ftle server volume as on a local disk.

Each AppleShare folder has an owner, who determines which users may have access to the
folder and in what fashion. Access privileges control access to information on the file server; a
folder can be kept private, shared by a group of users, or shared by all network users. The user
information placed in the server's user database allows the server to determine a user's access
privileges when he or she tries to gain access to the contents of a folder.

The access privileges for a folder or volume let the owner, the group, or guests see folders,
see ftles, and make changes inside the folder. Users can select folders and view their access privileges
for those folders. In addition, a folder's owner can examine and change the access privilege
information, which includes the owner's name, the folder's associated group, the owner's privileges,
the group's privileges, and a guest's privileges (see Figure J-6). The owner can transfer the folder's
ownership to another user.

• Figure I-6 Access privileges

§0 Access Priuile es

~ Locked 0
L__j Empty FoldK

Whw-e: U.S., File Server: Salu

Logged on as: Rex 'w'olf
Privileogeos: Stt Folders, See Files, Make

Changes
.................................. u

Owner:h

Group :jcorporatt Salts

Owntr Group EvKyone

See Folders: 181 0 0
See Files: 181 0 0

Make Changes: 181 0 0
Change All Enclosed Fol<Mrs :0

... -.. .

Undo ([Saue)J

1-18 I NT R 0 D U C T I 0 N

Access to an AppleShare file server is not limited to Macintosh computers. The LocalTalk PC
Card allows MS-DOS-compatible personal computers to be connected to a LocalTalk network. Using
this card with the AppleShare PC software, MS-DOS personal computer users can print to
LaserWriter, Image Writer II, and Image Writer LQ printers from within an application. AppleShare PC
software also allows these users to work with an AppleShare file server by means of a menu-based
user interface. Additionally, AppleShare PC supports various third-party Ethernet and token ring
cards, allowing MS-DOS machines to connect to EtherTalk and TokenTalk networks.

Likewise, Apple IIGS and Apple lie computers can gain access to the printing and filing services
of an AppleTalk system. LocalTalk hardware is built into the Apple IIGS, while the Apple lie requires
the use of a plug-in LocalTalk board. In fact, Apple lie and Apple IIGS computers can operate and
even start up in a diskless fashion from an AppleShare server.

The dialog between a user's computer and an AppleShare file server is conducted using the
AppleTalk Filing Protocol (AFP). AFP was central to the global vision that the AppleShare
product serve as the basis for cross-system information sharing between dissimilar computers. For
this reason, AFP calls were specifically designed to have enough semantic and syntactic content to
allow complete servicing of each of the computer families. Most importantly, these calls provide
sophisticated services for managing a shared Desktop view of the file server's volumes. Changes
made by the user of one Macintosh computer will automatically be reflected on the Desktop view
of any other Macintosh computer viewing the same folder or volume.

The AFP ftle server environment encourages the development of applications that can
themselves be shared as well as those that allow the sharing of data. To use applications within
the server's shared storage environment, special considerations are necessary for ftle management,
particularly when the applications allow multi-user and multilaunch capabilities. Multi-user appli
cations let two or more users make changes to the same file concurrently. Multilaunch applications
let two or more users simultaneously open and work with one copy of an application. AFP includes
calls that allow applications to control the concurrent file access required by such applications. The
complete specification of AFP is provided in Chapter 13.

Why did Apple decide to design a new filing protocol? Why did we not use an existing, de facto
or industry-standard protocol? The design of AFP was started at Apple in 1984. Two other file
service protocols were then in various stages of completion, PC-net's SMB and Sun Microsystem's
NFS.

SMB and NFS were each designed to serve a particular computer family. Specifically, MS-DOS
was the target system for SMB and UNIX for NFS. SMB was later extended to accommodate some
versions of the UNIX ftle system. NFS is currently being extended for use by MS-DOS computers.
On the other hand, AFP was visualized from the very beginning to service equally a variety of
computers.

The AppleTalk network system 1-19

Neither SMB nor NFS is capable of handling several significant aspects of the Macintosh
hierarchical file system (HFS), such as much longer file and folder names, dual fork files, and the
Desktop database. Use of SMB or NFS would not have allowed us to provide a seamless extension
of the Macintosh Desktop to the file server.

AppleTalk protocol architecture and the ISO-OSI reference
model
The various AppleTalk protocols draw upon the services of some other protocol(s) and deliver an
enhanced service either to some other protocol or to an application. In Figure 1-7, the protocols are
shown in a layered configuration, with a protocol in a higher-level layer drawing on the services of
one or more protocols in lower-level layers. Layered models for network protocols are inspired by
their prior use in describing various concepts (in particular, operating systems) of stand-alone
computers. Today, most carefully designed network systems rely on a layered protocol
architecture.

The schema shown in Figure I-7 permits an easier understanding of the complexities of the
overall system. It provides a framework for examining the interaction of the different components
and for isolating functionality to certain portions of the system. This structure allows a divide-and
conquer approach to designing and building the protocol architecture.

Beyond these general observations, an examination of various network systems reveals a
common pattern to the progression of services provided by the layers of these protocol
architectures. This progression typically proceeds from the physical management of data
communication hardware to the data-link access services discussed earlier. Beyond the data link,
network-wide addressing and routing capabilities are added. Reliability of data transfer is usually the
next value-added service, involving retransmission disciplines and connection/session management
services.

Above the connectivity services, network systems are now beginning to address presentation
issues such as data representation incompatibilities. Finally, the protocols for providing various user
and application-level services such as filing and electronic messaging are added.

1-20 I N T R 0 DUCT I 0 N

• Figure 1-7 AppleTalk protocol architecture

Apple Talk
Data Stream

Protocol (ADSP)

Routing Table
Maintenance

Protocol (RTMP)

Zone
Information

Protocol (ZIP)

AppleTalk
Echo

Protocol (AEP)

AppleTalk Filing
Protocol (AFP)

AppleTalk
Session

Protocol (ASP)

Apple Talk
Transaction

Protocol (ATP)

PostScript

Printer
Access

Protocol (PAP)

r------'____

Name
Binding

Protocol (NBP)

...._ r---------'

- "---------' L...----' L-----.J '------------' L..---------'_

Token Talk
Link Access

Protocol (TlAP)

Token ring
hardware

Datagram Delivery Protocol <DDP)

EtherTalk
Link Access

Protocol (EI.AP)

Ethernet
hardware

LocaiTalk
Link Access

Protocol (LLAP)

LocalTalk
hardware

AppleTalk protocol architecture and the ISO-OSI reference model 1-21

In the 1970s, the International Standards Organization (ISO) developed and published a standard
framework known as the Open Systems Interconnection (OSI) reference model (the ISO-OSI
reference modeD. This model defmes in explicit terms the concepts of a protocol and a service inter
face. It defines a protocol architectural framework consisting of seven layers: physical, data link, net
work, transport, session, presentation, and application. The goal of the model was to establish a stan
dard framework and the associated terminology for describing, studying, and comparing the protocols
of network architectures. Although the ISO-OSI reference model did not define any standard protocols,
it was to serve as the framework in which future activity on protocol standardization would proceed.

Protocol entities populate the layers of the ISO-OSI reference model. A protocol entity located in
layer n of the model draws upon the services provided by layer n-1, and in tum provides layer n services
to protocol entities located in layer n+ 1. A protocol entity gains access to the services of another
protocol entity, located in the adjacent lower layer, through a service interface (see Figure 1-8). Protocol
entities located in the same layer of the model communicate with each other through a protocol.

The AppleTalk protocols can now be placed in the framework of this model, as shown in Figure 1-9.
The reader is cautioned not to read from this figure a protocol compatibility of AppleTalk with the OSI
protocols currently in various stages of definition, approval, and deployment. This figure merely
establishes that the architectural structure fits into the standard framework of the ISO-OSI model.

• Figure 1-8 Interfaces and protocols

Layer 11 +1 Protocol
entity

Protocol 11 + 1

service

Protocol
entity

------------------- ----------------------------------- ------------·

Layer n

Layer n- 1

Protocol
entity

Protocol
entity

interface 11

Protocol11

service
interface 11 - 1

Protocol 11 - I

1-22 INTRODUCTION

Protocol
entity

Protocol
entity

• Figure 1·9 AppleTalk protocols and the ISO-OSI reference model

7. Application

•
AppleTalk Filing PostScript
Protocol < AFP I

6. Presentation

5. Session
Apple Talk Zone ApplcTalk Printer

Data Stream Information Session Access I

Protocol (ADSP> Protocol <ZIP) Protocol <ASP> Protocol (PAP)

Jr r---
~r-.....

' ~LUL
.. -

......

Routing Table AppleTalk AppleTalk Name
4. Transport ~faintcnance Echo TrJnsaction Binding

Protocol <RTIIP) Protocol (AEP) Protocol <An> I Protocol (l\BP)
....__

I-

r--
...__ -

3. Network Datagram Delivery Protocol <DDPI

Token Talk EthcrTalk l.ocaiTalk
2. Data link Link Access Link Access Link Access

Protocol <TI.AP> Protocol (EL.\PI Protocol (LLAP)

Token ring Ethernet LocaiTalk
1. Physical hardware hardware hardware

AppleTalk protocol architecture and the ISO-OS! reference model 1·23

AppleTalk Phase 2
AppleTalk Phase 2, introduced in june 1989, provides compatible extensions to the AppleTalk
network system that enable it to function better in large network environments. Such
environments often include thousands of concurrently active devices and multiple concurrent
network protocols and data links. AppleTalk Phase 2 removed the restriction of a maximum of 254
concurrently active AppleTalk devices on one network. In addition, AppleTalk Phase 2 was designed
to minimize the interference of AppleTalk protocols with other non-AppleTalk devices in the same
environment.

Changes introduced with Phase 2 do not affect non-routing LocalTalk devices. In addition, none
of the higher-level protocols have changed. These include ADSP, ASP, PAP, and AFP. Only one small
enhancement (the TRel timer in exactly-once transactions can be set by the requestor) was added to
ATP. Most of the changes are to ELAP, DDP, RTMP, NBP, and ZIP. These changes need only be
implemented in routers and in EtherTalk devices (TokenTalk was introduced as a part of AppleTalk
Phase 2).

The single most important protocol change in AppleTalk Phase 2 is that a single AppleTalk
network can now be assigned more than one network number. The size of the range of network
numbers assigned to a network determines the maximum number of concurrently active AppleTalk
devices that can be supported on that network (253 devices per network number). LocalTalk
networks are assigned only a single network number, as they need support no more than 254
devices.

A key component of AppleTalk Phase 2 is the AppleTalk Internet Router product. In addition
to serving as the first router to implement the Phase 2 protocols, the AppleTalk Internet Router
allows up to eight AppleTalk networks (of any data-link type) to be interconnected. The router
software runs on a Macintosh and thus provides the familiar Macintosh user interface for router
setup and for monitoring of the internet. The router supports LocalTalk, EtherTalk, and Token Talk
and can be extended to support other data links as they are added to the Apple Talk network
system.

1-24 I NTRO D UCTI 0 N

Thoughts of the future
The initial installation of AppleTalk was spurred on by a trio of products-the Macintosh computer,
the LaserWriter printer, and LocalTalk connectivity. AppleTalk played a significant role in the ensuing
desktop publishing revolution. In the ftrst place, it provided shared access to an outstanding, but
relatively expensive, printing device. The ability to share the printer significantly reduced the per
user cost of the LaserWriter printer to an acceptable price-performance point. Users were able to
exploit this technology while focusing primarily on the outstanding quality of the printed page.

A variety of other network services helped broaden the appeal of AppleTalk. Today the
AppleTalk network system is used by an installed base of more than 1 million computers and
servers in network configurations that range in size from a minimum of two devices to large
intemets with thousands of devices. A variety of personal computer systems (including Macintosh,
Apple II, MS-DOS, and UNIX computers and larger central computers such as V AXs), are connected
to AppleTalk systems. A full range of servers and services is available from Apple and other vendors.

All network systems keep growing and changing over their lifetimes. Apple Talk is no exception.
In the future, AppleTalk is expected to grow in both scope (size) and reach (variety).

Scope

Large organizations and their subsidiaries are making increasing use of networking technology,
thus creating the need for very large network systems. These systems will connect hundreds of
thousands of computers of all sizes and types. As organizations span the globe, their networks will
be required to extend over wide geographical areas.

Large networks will require more sophisticated routing and management capabilities. Special
issues related to slow or intermittently available links will require resolution. Naming and
authentication services will become important issues for organizations wishing to provide a more
uniform control of these aspects.

Reach

The growing use of network systems has made users aware of the cumbersome integration of
networks into their computers. This difficulty is exacerbated by the variety of network
technologies and protocol families in use today.

A response to this growing qualitative complexity has been a drive to establish international
protocol standards. Notable among these movements are the efforts of various national and

Thoughts of the future 1-25

international organizations under the auspices of ISO to define and ratify a single family of standard
protocols.

This standardization activity will help as these protocols find wider acceptance. However, it
appears that the network systems of tomorrow will continue to use a variety of protocol families.
This increasingly complex network system, if not properly designed, could be extremely difficult to
use. An important goal for AppleTalk is to extend the user's reach into this polyglot environment
with an immediacy of service and elegance of interface modeled on today's AppleShare. This will
require the use of a variety of new products, such as gateways and entirely new technologies still
being developed.

Gateways are software and/or hardware devices that are interposed between two dissimilar
network systems. The gateway serves a role akin to that of a simultaneous interpreter between
people speaking different languages. This analogy might explain why gateways have long been
considered an important networking technology. However, the use of gateways has so far been
relatively limited. The complexity of full, seven-layer gateways between dissimilar protocol families
has, in general, rendered them impossible to design and build.

Specialized gateways have been quite effective. For instance, gateways between different
electronic mail systems are now fmding increased use. The development of a variety of application
level gateway services will extend the reach of AppleTalk into non-AppleTalk systems and will bring
important resources and services to the desk tops of AppleTalk users.

Companion volumes to Inside Apple Talk will be published to provide the specifications of
these extensions and modifications.

About Inside AppleTalk

Inside AppleTalk is divided into five parts. The book is further divided into fourteen chapters (an in
depth, chapter-specific, table of contents begins each chapter within the five parts) and four
appendixes. A glossary of terms and an index complete Inside Apple Talk.

Part I covers the physical and data-link alternatives that can be used in an AppleTalk network
system. This part includes a summary of the LocalTalk Link Access Protocol (LLAP); procedural
details for this protocol can be found in Appendix B. In addition, Part 1 includes a detailed
description of the AppleTalk Address Resolution Protocol (AARP) and discussions of how AARP is
used by the EtherTalk Link Access Protocol (ELAP) and the Token Talk Link Access Protocol (TLAP).

Part II describes the AppleTalk protocols that facilitate end-to-end transmission of data across
the network, specifying in detail the Datagram Delivery Protocol (DDP), the Routing Table
Maintenance Protocol (RTMP), and the AppleTalk Echo Protocol (AEP).

1-26 INTRODUCTION

Part III covers the AppleTalk protocols that handle naming, providing detailed descriptions of
the Name Binding Protocol (NBP) and the Zone Information Protocol (ZIP).

Part IV describes the AppleTalk protocols that guarantee reliable data delivery over the network
and includes detailed information about the AppleTalk Transaction Protocol (ATP), the Printer
Access Protocol (PAP), the AppleTalk Session Protocol (ASP), and the AppleTalk Data Stream
Protocol (ADSP).

Part V describes the protocols that provide end-user services and includes a complete
description of the AppleTalk Filing Protocol (AFP). In addition, Part 5 discusses the specification for
print spooling in an AppleTalk network.

The appendixes provide electrical specifications, LLAP procedural details, and a summary of the
AppleTalk protocol parameters.

Typographic and graphic conventions used in this book
Throughout this book, all numerical quantities are given as decimal numbers, except where
otherwise noted. A dollar sign preceding a number (for example, $3E) indicates hexadecimal (base 16)
notation. Bit sequences and binary numbers are written as strings of ls and Os beginning with a 0.

Words and phrases in boldface are described in the Glossary.

In figures depicting packet formats, the following graphical conventions are followed:

• Each simple rectangle represents 1 byte (8 bits). Vertical tick marks or solid lines delineate each
bit. The rightmost bit is the least-significant bit and is numbered bit 0. The leftmost bit is the
most-significant bit and is numbered bit 7.

• Each rectangle with one or more pairs of horizontal tick marks represents 2 or more bytes.
Within the multibyte field, the bottom-right bit is. the least-significant bit and is numbered
bit 0. The top-left bit is the most-significant bit.

• A pair of vertical ellipses represents a field of variable length.

• In most cases, the figure will show the format of the protocol being described and will omit
the formats of the other encapsulating protocols.

Typographic and graphic conventions used in this book 1-27

Where to go for more information
Readers wishing more detail about networking concepts mentioned in this chapter are encouraged
to consult the following references.

AppleTalk

• General (available from Addison-Wesley Publishing Company, Inc.):

AppleTalk Network System Overoiew

Inside Macintosh, Vol. II , Chap. 10

Inside Macintosh, Vol. V, Chap. 30

• AppleTalk system (available from Apple Programmer's and Developer's Association [APDA]):

AppleShare Programmer's Guide for the Apple JiGs

Apple Talk for VMS Documentation Suite:

Apple Talk for VMS Architecture and Implementation

Apple Talk for VMS Bridge Control Program Guide

Apple Talk for VMS Installation and Operation Guide

Apple Talk for VMS Protocol Support Library Reference Manual

Asynchronous Laser\Vriter Driver Developer's Guide

Macintosh AppleTalk Connections Programmer's Guide

Loca/Talk PC Card and Driver Preliminary Notes

Software Applications in a Shared Environment

General networking

Tanenbaum, Andrew S. Computer Networks. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.

Data links

Inside Apple Talk does not specifically address Ethernet or token ring cabling and protocols. For
more information on these physical and data-link protocols, refer to:

1he Ethernet, A Local Area Network: Data Link Layer and Physical Layer Specifications,
Version 2.0, November 1982 [specification document jointly published by Digital Equipment
Corporation, Intel Corporation, and Xerox Corporation].

1-28 I NTRODUCTION

802.2 Logical Link Control. IEEE, Inc., October 1985.

8023 Carrier Sense Multiple Access with Collision Detection. IEEE, Inc. May 1986.

802.5 Token Ring Access Method. IEEE, Inc. 1985.

Connection-oriented protocols

• For TCP/IP, please consult:

Cerf, Y. G. and Kahn R. E. "A Protocol for Packet Network Interconnection." IEEE Trans. Commun.
COM-22:637-648 (May 1974).

• The Xerox Network Systems (XNS) internet protocols are specified in:

Internet Transport Protocols. Xerox Systems Integration Standard X.S.I.S. 028112, December 1981.

• The X.25 access standard is specified in the following publication of the CCITI:

Data Communication Networks Interfaces: Recommendations X.20-X32, Red Book, Volume
VIII-Fascicle VIII.3. Geneva: International Telecommunications Union-CCITI, 1985.

PostScript

PostScript® is the document representation/page description protocol used for communication
with LaserWriter printers. The widely used standard was first made available as a product in the
AppleTalk system, in Apple's LaserWriter printers. For a detailed discussion of PostScript, refer to:

Adobe Systems Incorporated. PostScript Language Reference Manual. Reading, Mass.: Addison
Wesley Publishing Company, Inc., 1985.

ISO-OSI reference model
Zimmermann, H. "OS! Reference Model-The ISO Model of Architecture for Open Systems

Interconnection." IEEE Trans. Commun. COM-28:425--432 (April1980).

Database access

CI/1 Connectivity Language: Language Description, Network Innovations, August 1988.

Where to go for more information 1-29

Part I Physical and Data links

P A R T I of Inside AppleTalk discusses the protocols used to
communicate between the nodes of a single AppleTalk network. These
protocols comprise the two lowest layers of the AppleTalk protocol
architecture (as shown in Figure 1-9 of the Introduction).

In particular, Part I specifies:

• the LocalTalk Link Access Protocol (LI.AP)

• the AppleTalk Address Resolution Protocol (AARP)

• the EtherTalk Link Access Protocol (ELAP)

• the TokenTalk Link Access Protocol (TLAP)

AppleTalk's node-to-node packet transmission is the responsibility of the
Datagram Delivery Protocol (DDP). DDP was designed to be data-link
independent. This means that DDP can send its packets through any data
link and physical technology.

The Macintosh and Apple IIGS computers, and most LaserWriter printers,
have built-in hardware for LocalTalk network connectivity, which is based on
LLAP, as specified in Chapter 1, "LocalTalk Link Access Protocol." An important
feature of the design of LLAP and DDP is that the node-addressing
mechanisms used by these two protocols are identical. Hence, DDP can
directly call and use the services provided by LLAP.

For LocalTalk hardware specifications, see Appendix A. Various alternative
hardware implementations are available that provide exactly the same service
as LocalTalk. These alternative data links directly use LLAP but substitute
different hardware for LocalTalk cabling. The use of these links requires no
additional protocol.

When using an arbitrary data link below DDP, a fundamental problem of
address mismatch can arise. This problem results from the different forms of
the node addresses used by DDP and the particular data link. AppleTalk
provides an address-resolution capability for mapping between these
addresses. This service is provided by AARP and is specified in Chapter 2,
"AppleTalk Address Resolution Protocol."

The first use of AARP was made by Apple in the EtherTalk connectivity
product, which sends DDP packets over an industry-standard Ethernet local
area network. In this situation, the node addresses of DDP are converted,
through the use of AARP, into 48-bit Ethernet node addresses. DDP packets
are wrapped in appropriate headers and sent through the standard Ethernet
data-link services. Furthermore, a node's AppleTalk address is dynamically
assigned despite Ethernet's use of statically assigned addresses. These various
services, together with the mechanisms used by the Ethernet data link, are
referred to as ELAP and are specified in Chapter 3, "EtherTalk and Token Talk
Link Access Protocols."

Apple's Token Talk product provides many of the same services as
EtherTalk. AARP is used to map node addresses used by DDP into the 48-bit
addresses used by token ring. DDP packets are wrapped in token ring headers
and sent through the standard token ring data-link services. A node's
AppleTalk address is dynamically assigned. These services are referred to as
TLAP and are specified in Chapter 3, "EtherTalk and TokenTalk Link Access
Protocols."

The discussion in Part I is restricted to mechanisms for node-to-node
delivery of AppleTalk packets on a single network. Routing extensions in the
case of multiple, interconnected AppleTalk networks are discussed in Part II.

In Part I, the term AppleTalk node address (or simply AppleTalk
address) refers to the node address used by DDP and higher levels of the
AppleTalk protocol architecture. Likewise, hardware node address (or simply
hardware address) refers to the address used by a particular data-link layer. •

Chapter 1 LocalTalk Link Access Protocol

CONTENTS

Link access control I 1-3

Node addressing I 1-3
Node IDs I 1-4
Dynamic node ID assignment I 1-4

Data transmission and reception I 1-6
LLAP packet I l-6
LLAP frame I 1-9

Data packet transmission I 1-10
Carrier sensing and synchronization I 1-10
Transmission dialogs I 1-11
Directed data packet transmission I 1-14
Broadcast data packet transmission I 1-15

Packet reception I 1-15

•

1-1

T H E L 0 CA L TALK L I N K A C C E S S P R 0 T 0 C 0 L (LLAP)

corresponds to the data-link layer of the ISO-OSI reference model and allows

network devices to share the communication medium. This protocol provides

the basic setvice of packet transmission between the nodes of a single

LocalTalk or compatible network.

The physical hardware offers the connected nodes a shared data transmission

medium, referred to as the link. LLAP is responsible for regulating the access

to this shared link by the nodes of the network.

LLAP accepts data from its clients in the node and then encapsulates it in an

LLAP data packet. The encapsulation adds a destination node address to the

packet, allowing LLAP to deliver the data packet to its destination node. The

packet also contains the sending node's address, which is delivered by LLAP to

the data's recipient.

Furthermore, LLAP ensures that any packets damaged in transit are discarded

and not delivered to their destination node. In that situation, however, LLAP

itself makes no effort to ensure delivery of the packet. It provides a best

effort delivery of the packet.

The main responsibilities of LLAP are to

• provide link access control

• provide a way to address nodes

• perform data transmission and reception •

1-2 CHAPTER 1 LocalTalk Link Access Protocol

Link access control

111e nodes on a given link compete for access to the link. Without a way of controlling their access,
data could not be transferred reliably over the link. The different nodes would in a sense "stumble"
over each other's transmissions. LLAP provides appropriate link-access management to ensure fair
access to all nodes.

LLAP manages access to the shared link by using an access discipline known as Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA). There are three parts to the CSMA/CA
technique.

Carrier sense means that a node wishing to send a data frame first checks the transmission
medium before sending any data. The node is said to "sense" the activity on the link. If the link is in
use, then the node defers to the ongoing transmission.

Multiple access refers to the fact that more than one node can obtain access to the link.
Collision avoida11ce means that the protocol attempts to minimize the occurrence of collisions on
the link. A collision occurs when two or more nodes transmit data at the same time. In the LLAP
CSMA!CA technique, all transmitters wait until the line has been idle for a specified minimum
amount of time plus an additional random period before attempting to transmit.

The use of random wait periods has the effect of spreading the data transmissions over time.
This dispersion is greater when traffic is higher and when more collisions are expected to occur.

It is important to note that LLAP does not require suitable hardware to detect the occurrence
of collisions. Instead it has to infer that a collision might have occurred. LLAP uses a "handshake"
mechanism to allow it to make this inference. Furthermore, the handshake mechanism reduces the
loss of channel bandwidth when a collision occurs because the collision normally occurs in the
handshake phase. Since the handshake messages are short in length, only a small amount of the
link's time is wasted by a collision.

Node addressing
Node addressing provides a means of uniquely identifying each node connected to the link. LLAP
uses a technique called dynamic node ID assignment, a method that eliminates a configuration
step and also allows easy movement of nodes between networks.

Node addressing 1-3

Node IDs

LLAP's node-addressing mechanism consists of assigning an identification number to each node and
including that number in all packets destined for that node.

LLAP uses an 8-bit node identifier number (node ID) to identify each node on a link. A
node's ID is its data-link address.

Each LLAP packet includes the node IDs of its sender and its intended destination. These
addresses are used by the network hardware to ensure that the packet is delivered only to the
correct destination node.

Dynamic node ID assignment

Unlike other network data links, LLAP uses a dynamic node-ID-assignment scheme. With dynamic
node ID assignment, a node does not have a fiXed, unique address. Instead, a node assigns itself a
node ID upon activation.

A key goal of dynamic node ID assignment is to prevent a conflict that otherwise might occur
when a node is moved between networks and when the old node ID of the device is already in use
on the new network. Other solutions to this problem have relied on building universally unique
node addresses into each device when it is manufactured.

LLAP's dynamic address-assignment scheme eliminates what has been a typical part of network
configuration. It does so without the need to build a universally unique number into each node or
to administer the assignment of such numbers to different vendors.

When a node is activated on the network, the node makes a "guess" at its own node ID, either
by extracting this number from some fonn of long-tenn memory (for example, nonvolatile RAM or
disk) or by generating a random number. The node then verifies that this guessed number is not
already in use on that network.

The node verifies the uniqueness of its node ID number by sending out an LLAP Enquiry
control packet, as shown in Figure 1-1, to the guessed node address and by waiting for
acknowledgment. If the guessed node ID is in use, then the node using it will receive the LLAP
Enquiry control packet and will respond with an LLAP Acknowledge control packet The
reception of the Acknowledge control packet notifies the new node that its guessed node ID is
already in use. The node must then repeat the process with a different guess. Each Enquiry control
packet is transmitted repeatedly to account for cases in which a packet is lost or a node already
using the guessed node ID is busy and therefore might miss an Enquiry packet.

1-4 CHAPTER 1 LocalTalk Link Access Protocol

• Figure 1-1 Under dynamic node ID assignment, a new node tests its randomly assigned ID

Acknowledge
control packet

No Acknowledge
control packet

Enquiry control packet

Enquiry control packet

LLAP node IDs are divided into two classes: user node IDs and server node IDs. User node IDs
are in the range 1-127 ($01-$7F); server node IDs are in the range 128-254 ($80-$FE). A destination
node ID of 255 ($FF) is called the broadcast hardware address (broadcast ID) and has a special
meaning. Packets sent with the destination node ID equal to 255 are accepted by all nodes,
permitting the broadcasting of packets to all nodes on the network. A destination node ID equal
to 0 ($00) is not allowed and is treated as unknown.

Node ID range

0($00)

1-127 ($01-$7F)

128-254 ($ID-$FE)

255($FF)

Description

not allowed (unknown)

user node IDs

server node IDs

broadcast ID

Node addressing 1-S

The division of node IDs into two groups minimizes the negative impact of a node acquiring
another node's ID when the latter is busy and fails to respond to the entire series of Enquiry
packets. This situation can occur because some nodes may be unable to receive packets for
extended periods of time (for example, if they are engaged in a device-intensive operation such as
gaining access to a disk or transferring a bitmap document to a directly connected laser printer).
Such a node would not respond to another node's Enquiry packets, which could result in two nodes
acquiring the same node !D.

Excluding user (nonserver) node IDs from the server node ID range eliminates the possibility
that user nodes (which are switched on and off with greater frequency) will conflict with server
nodes. It is imperative that no node ever acquire the number of a node functioning as a server; this
would disrupt service not only between the two conflicting nodes bur also for users trying to
communicate with either of those nodes.

Within the user node ID range, verification can be performed quickly (that is, with fewer
retransmissions of the Enquiry control packet), thus decreasing the LW initialization time for user
nodes. A more thorough node ID verification is performed by servers (in other words, additional
time is taken to ensure that they acquire unique node IDs on the link). This scheme increases the
initialization time for server nodes bur is not detrimental to the server's operation since such nodes
are rarely switched on and off.

Data transmission and reception

LLAP uses two kinds of packets: control packets, which are used for internal protocol control
purposes, and data packets, which include data provided by LLAP's client.

LLAP packet

An LLAP packer consists of a 3-byte LW header followed by a variable-length data field (0-600
bytes). (See Figure 1-2.) TI1e LLAP header contains the packet's destination node ID, the source
node ID, and a 1-byre LLAP type field. The llAP type field specifies the type of packet. Values in
the range 128-255 ($80-$FF) are reserved to identify LW control packets. LLAP control packets do
not contain a data fie ld.

1-6 CHAPTER 1 LocalTalk Link Access Protocol

• Figure 1-2 LLAP frame and packet format

LLAP packe1

LL>\P
header

Dala field
(0 10

6oO hy1esl

Frame 1r:1iler

I' byte (8 bils)~

~ISU

1
r LSB I I I I I I I

Flag

• • •

• • •

I

I

Flag

• • •

Deslin:uiun nude ID

I

I

Source nude ID

LLAP 1ypc

I I I

Dat:1lenglh
I I I

Frame check
sequence

Flag

Ahon sequence

•••

,-- 1--

I'' _ _L_

I I I
L 1--

• • •

MSU

LSB

LL>\P frame

Data transmission and reception 1-7

Four types of control packets are currently in use. All other LLAP type field values in the range
128-255 ($80-$FF) are reserved by Apple for future use.

LIAP type
Name field value Description

lapENQ $81
lapACK
lapRTS

lapcrs

$82

$84

$85

Enquiry packet used for dynamic node ID assignment
Acknowledgment packet responding to a lapENQ
request-to-send (RTS) packet notifying the destination node that a data
packet awaits transmission
clear-to-send (CfS) packet response to lapRTS, indicating readiness to
accept a data packet

+ Note: LLAP control packets received with values in the LLAP type field other than those
previously listed are currently invalid and must be discarded.

LLAP type fields with values in the range 1-127 ($01-$7F) are used for LLAP data packets; these
packets carry client data in the data field. In such packets, the type field specifies the LLAP type of
the client to whom the data must be delivered. This specification allows the concurrent use of LLAP
by several network layer protocols and is crucial to maintaining an open systems architecture.
The LLAP implementation in the receiving node uses the LLAP type field to determine the client for
whom the data is intended. The client, in tum, uses this field to decide how to interpret the LLAP
data for use by a higher-level protocol. As an example, Datagram Delivery Protocol (DDP) packets
correspond to the values 1 and 2 in the LLAP type field.

LLAP transmits and receives data packets on behalf of its clients. The format and interpretation
of the data field are defmed by higher-level protocols.

The low-order 10 bits of the first 2 bytes of the data field must contain the length in bytes
(most-significant bits first) of the LLAP data field itself. The data length includes the length field
itself. The high-order 6 bits of the length field are reserved for use by higher-level protocols.

The LLAP header is 3 bytes long, and the data field can contain from 2 to 600 bytes. Therefore,
the smallest valid LLAP data packet is 5 bytes long; the largest is 603 bytes.

1-8 CHAPTER 1 LocalTalk Link Access Protocol

LLAP frame

An LLAP frame encapsulates an LLAP packet with a frame preamble and a frame trailer, as shown in
Figure 1-2.

On the link itself, LLAP uses a bit-oriented link protocol for transmitting and receiving packets.
The frame preamble precedes the packet and is used to identify the start of the frame. The
frame trailer has two objectives. First, it includes a 2-byte quantity called the frame check
sequence (FCS) that is used to detect and discard packets received with errors. Second, the last
portion of the trailer, consisting of a flag byte and an abort sequence {12-18 1 's), serves to
demarcate the end of the frame.

The use of a bit-oriented protocol allows the presence of all possible bit patterns between the
frame's leading and trailing flags. The frame delimiter for LLAP, known as a flag byte, is the
distinctive bit sequence 01111110 ($7E). Typically, flags are generated by hardware transmitters at
the beginning and end of frames and are used by hardware receivers to detect frame boundaries.

In order for a data-link protocol to transmit all possible bit patterns within a frame, the
protocol must ensure data transparency. LLAP accomplishes data transparency through a
technique known as bit stuffing. When transmitting a frame, LLAP inserts a 0 after each string of 5
consecutive 1 's detected in the client data; this process guarantees that the data transmitted on the
link contains no sequences of more than 5 consecutive 1 's. A receiving LLAP performs the inverse
operation, stripping a 0 that follows 5 consecutive 1 's.

The 16-bit FCS is computed as a function of the contents of the packet itself (that is, the flags
and the abort bits of the frame are not included): the destination node ID, source node ID, LLAP
type, and the data field, using the standard cyclic-redundancy check (CRC) algorithm of the
Consultative Committee on International Telephone and Telegraph (CCim. This algorithm,
known as CRC-CCITI, is described in detail in Appendix B.

Prior to transmitting a packet, LLAP sends out a synchronization pulse, a transition period on
the link that is followed by an idle period (see "Carrier Sensing and Synchronization" later in this
chapter). A frame preamble, consisting of 2 or more flag bytes, follows the synchronization pulse.
The frame terminates with a frame trailer, which consists of the FCS, 1 flag byte, and the abort
sequence. The abort sequence indicates the end of the frame.

Data transmission and reception 1-9

Data packet transmission

The transmission of a data packet by LLAP involves a special dialog consisting of one or more LLAP
control frames followed by the data frame. This dialog is based on a CSMA/CA access protocol,
some aspects of which were outlined in "Link Access Control" earlier in this chapter.

Carrier sensing and synchronization

LLAP packet transmission dialogs require each node to sense the use of the transmission medium.
Two techniques are used by LLAP for this purpose.

First, LocaiTalk hardware can detect a nag byte, the distinctive bit sequence 01111110 ($7E). This
hardware capability is provided to allow the receiving node to achieve byte synchronization with
the sender. LLAP can thus provide a certain measure of link-use sensing capability. TI1e nag byte in
the trailer is also detected by LocaiTalk hardware and provides an indication of the end of the
packet. The abort sequence at the end of the frame also forces every node's hardware to lose byte
synchronization, thus confirming the end-of-line use by the current sender.

A drawback of the flag-byte synchronization approach is that synchronization can take 2 or
more flag bytes to be achieved; during that time the node could determine the line to be idle when
it is, in fact, being used by another node.

LLAP supplements this byte synchronization for carrier sensing with a variant of the hardware's
bit-clock synchronization capability. For this purpose, prior to sending a request-to-send (RTS)
frame, LLAP transmits a synchronization pulse. A synchronization pulse is a transition on the
link, followed by an idle period greater than 2 bit-times. The synchronization pulse is obtained by
momentarily enabling the hardware line driver for at least 1 bit-time before disabling it, causing a
transition on the line that will be detected as a clock by all receivers on the network. However, since
the transition is followed by an idle period of sufficient length, all receivers conclude that they have
lost the clock. They are said to have detected a missing clock. The hardware can detect this missing
clock much more rapidly than it can achieve byte synchronization. With the synchronization pulse
at the leading edge of an RTS frame, the detection of a missing clock provides a very quick way to
detect use of the line by a sender.

The missing clock allows transmitters to synchronize their access to the line (transmitters
become immediately aware if a transmission is about to take place). Synchronization pulses can also
be sent at the beginning of other LLAP frames.

Further details of carrier-sensing aspects of LocalTalk hardware are discussed in Appendix A.

1-10 CHAPTER 1 LocaiTalk Link Access Protocol

Transmission dialogs

For the purpose of transmitting information, LLAP distinguishes between two kinds of data
packets and, consequently, two kinds of transmission dialogs. A directed packet is sent to a
single node and hence is transmitted via a directed transmission dialog. Similarly, a broadcast
packet (destination node ID equals 255 ($FF)) goes to all nodes on the link via a broadcast
transmission dialog.

Dialogs must be separated by a minimum interdialog gap (IDG) of 400 microseconds. The
different frames of a single dialog must follow one another with a maximum interframe gap
(IFG) of 200 microseconds.

+ Note: A frame preamble contains 2 or more flag bytes. If more than 2 flag bytes are
transmitted, the source must ensure that the destination will receive the flag bytes and the
destination address byte within the interframe gap (IFG). In other words, the IFG is defined
as the time from the end of the abort sequence of the previous frame's trailer to the end of
the current frame's destination address byte.

The transmission dialog is described separately for directed and broadcast packets. Figure 1-3
illustrates the frames and the timing used in the dialogs. LLAP transmission dialogs are best
understood in the case of directed data packets.

The transmitting node uses the ability of the physical layer to sense if the line is in use. If the
line is busy, the node waits until the line becomes idle. While the node is waiting, it is said to defer.
Upon sensing an idle line, the transmitter waits for a time equal to the minimum IDG (400
microseconds) plus a randomly generated period. During this wait, the transmitter continues to
monitor the line. If the line becomes busy at any time during this wait period, the node must again
defer. If the line remains idle throughout this wait period, then the node sends an RTS packet to the
intended receiver of the data packet. The receiver must return a clear-to-send (CfS) packet to the
transmitting node within the maximum IFG (200 microseconds). Upon receiving this packet, the
transmitter must start sending the data packet within the maximum IFG.

Data packet transmission 1-11

• Figure 1-3 LLAP transmission dialogs

End of previous frame.
line becomes idle.

i-v~-1 r-·---1 r----·---1
ell--------1 ~~ II ~II ~~~ II ,-,--------11 ~------rl~ I~ Time

I
I

(a) Directed transmission dialog

I
I
I

RTS r· packet

RTS
I packet

(b) Collision

Collision

ll II
RTS

packet

I

(c) Broadcast transmission dialog

(d) Node address assignment dialog

200

Line i~ sensed idle.
Retry initiated.

microseconds

r- 200 microseconds

II

~
II

Data
packet

Generated if another node with
same node ID is present

1-12 C H A PTE R 1 LocalTalk Link Access Protocol

> Time

II

t = interframe gap OFG)
(less than 200 microseconds)

TD = interdialog gap (IDG)
(greater than 400 microseconds)

T R = randomly generated time period

The purpose of this algorithm is to

• restrict the situations in which collisions are more likely to occur (the RTS-CTS handshake); in
these situations, a minimum amount of line time is wasted by the collision

• spread out the use of line time among transmitters that are waiting for the line to become idle

The RTS-CTS handshake is said to be successful if a valid CTS packet is received by the transmitter
after it has sent out an RTS packet. A successful RTS-CTS handshake signifies that a collision did
not occur and that all intending transmitters have heard of the coming data packet transmission
and are deferring.

If a collision does occur during the RTS-CfS handshake, then the corresponding LLI\P control
packet will be corrupted by the collision. This corruption will be detected by using the FCS, and the
corresponding packet will be discarded by its receiving node. The net result is that a crs packet will
not be received by the sender of the RTS packet within the maximum permissible time of 200
microseconds, and the sending node will then back off and retry. In this situation, the sending node
is said to assume a collision has occurred.

Two factors are used for adjusting the range of the randomly generated period:

• the number of times the node has to defer

• the number of times it assumes a collision has occurred

This history is maintained in two 8-bit history bytes, one each for deferrals and collisions. At each
attempt to send a packet, these bytes are shifted left 1 bit. The lowest bit of each byte is then set
if the node had to defer or had to assume a collision has occurred, respectively. Otherwise, this bit is
cleared. In effect, the history bytes retain the deferral and collision history for the last eight
attempts.

The random wait time is generated as a pseudorandom number. These numbers (produced
through an arithmetic process) are close to a true random sequence. The range of numbers is
adjusted according to the current link traffic and collision history. If collisions have been assumed
for recently sent packets, it is reasonable to expect heavy traffic and higher contention for the link.
In this case, the random wait period should be generated over a larger range, thus spreading out (in
time) the different contenders for use of the line. Conversely, if the node has not had to defer on
recent transmissions, a lighter offered traffic is inferred, and the random wait period should be
generated over a smaller range, therefore reducing dispersion of transmission.

The exact use of the history bytes for determining random wait periods is described in
"Algorithms" in Appendix B.

Data packet transmission 1-13

Directed data packet transmission

Directed packets are sent according to the following procedure, as shown in Figure 1-4:

1. The transmitter senses the link until the link has been idle for the minimum IDG (400
microseconds).

2 The transmitter then waits an additional random time period.

3. If the link is still free, the transmitter sends an RTS frame to the intended destination node.

4. The destination node responds with a CfS frame.

5. The transmitter, upon successful reception of the crs frame, sends the data frame (in which it
encapsulates the client's data).

The destination node must start sending the CfS frame within the maximum IFG of 200
microseconds. Otherwise, the transmitter will assume that a collision has occurred and will return
to step 1. For each attempt, a new random number must be generated in step 2. If the transmitter
is unable to send the data packet after 32 attempts, it reports failure to its client.

• Figure 1-4 RTS-CfS handshake during a directed data transmission

Data packet's
source node

Data packet's
destination nod~

'-----:-----------:---------> Time

\~ I\" p:tckct crs packet

\ /" \
'----------------------> Time

1-14 CHAPTER 1 LocalT:1lk Link Access Protocol

Broadcast data packet transmission

Broadcast packets, which go to all nodes on the link, have a destination node ID of 255 ($FF).
Broadcast packets are sent without collision except if another transmitter attempts to broadcast
at the same time.

Broadcast frames are sent according to the following procedure:

1. The transmitter senses the link until the link has been idle continuously for the minimum lOG
(400 microseconds).

2 The transmitter then waits an additional random time period.

3. If the link is still free, the transmitter sends an RTS frame with destination address of 255 ($FF).

4. The transmitter checks the line for the maximum IFG (200 microseconds).

5. If the line stays idle throughout step 4, the transmitter sends the data frame.

Although it does not expect to receive a response, the transmitting node sends an RTS frame to
notify all other transmitters of its intent to broadcast. Furthermore, the RTS frame forces a
collision if another transmitter happens to start a directed transmission at the same time, causing
that node to back off.

If the transmitter detects link activity during step 4, it returns to step 1 to try again. The node
will make 32 attempts, beginning with step 1, before reporting failure to its client.

Packet reception

A node will accept an incoming packet if

• its destination address is the same as the node's ID (or is the broadcast address)

• the frame's FCS is verified to be correct

A receiving node will reject bad frames resulting from one of several error conditions. LLAP handles
these situations internally, without referring them to its client

Packet reception 1-15

Error conditions

packet size

Description

packet length is less than 5 bytes or more than 603 bytes

overrun/underrun LLAP could not stay synchronized with the incoming data

frame type the type field does not match a valid LLAP value

frame check sequence CRC-CCITI has detected an FCS error

The above discussion describes in general tenns LLAP's transmission and reception mechanisms. A
more detailed specification of these packet transmission and reception disciplines is given in
Appendix B.

Also included in Appendix B are detailed algorithms of LLAP's dynamic node ID assignment as
well as the CRC-CCm computation of the FCS.

1-16 CHAPTER 1 LocalTalk Link Access Protocol

Chapter 2 AppleTalk Address Resolution Protocol

CONT ENTS

Protocol families and stacks I 2-3

Protocol and hardware addresses I 2-3
Address resolution I 2-3

AARP services I 2-5

AARP operation I 2-6
Address mapping I 2-7

Request packets I 2-7
Response packets I 2-7

Dynamic protocol address assignment I 2-8

Retransmission of AARP packets I 2-9
Filtering incoming packets I 2-9

Verifying packet addresses I 2-10
Gleaning address information I 2-10

AMT entry aging I 2-10

AARP packet formats I 2-11

•

2-1

THE APPLETALK ADDRESS RESOLUTION PROTOCOL

(AARP) maps between any two sets of addresses at any level of one or more

protocol stacks. Specifically, in the AppleTalk protocol architecture, AARP is

used to map between AppleTalk node addresses, used by the Datagram

Delivery Protocol (DDP) as well as higher-level AppleTalk protocols, and the

addresses of the underlying data link that is providing AppleTalk

connectivity. AARP makes it possible for AppleTalk systems to run on any

data link. •

2-2 CHAPTER 2 Apple Talk Address Resolution Protocol

Protocol families and stacks
The collection of all the protocols, corresponding to the upper five layers of the ISO-OS! reference
model, used in a particular protocol architecture is referred to as a protocol family. An instance of
a protocol family in a given node is known as a protocol stack. This terminology allows us to
distinguish between the protocol architecture itself and an instance of that architecture
implemented in a particular node.

Protocol and hardware addresses
Figure 2-1 shows a node in which several protocol stacks (for instance, AppleTalk, TCP/IP, XNS) are
in simultaneous use. The node is connected to a single data link, and the packets of the different
protocol families running in the node are all sent through this same data link. Each of the node's
protocol stacks must use its own addressing scheme to specify the address of the node. The node
address used by one protocol family will usually not be intelligible to any of the other families. In
addition, the data-link layer has its own scheme for assigning an address to the node. Thus, a node
can have multiple addresses, each of which is intelligible to one particular protocol family or data
link.

The node address used by a protocol stack is said to be the node's protocol address
corresponding to the particular protocol family. This address identifies the particular stack among
its peers on the same network and is used to communicate with these peer entities.

The node address used by a data link is the node's hardware address.

Address resolution

A protocol stack can send a packet through the node's data link to another node in which the same
protocol family is resident. For this purpose, when the protocol stack calls the data link to send a
packet to its peer stack in another node, it will specify the destination node by using the latter's
protocol address. Since this address is not intelligible to the data link, it must fi rst be translated to
the equivalent data-link or hardware address of the destination node. This translation of addresses
is known as address resolution.

Protocol and hardware addresses 2-3

• Figure 2-1 Multiple protocol stacks using a single link

7. Application Protocol stack Protocol stack Protocol stack
A B c

- ~ ~ ~

6. Presentation

- ~ ~ ~

5. Session

- ~ ~
4. Transport

- ~ ~
3. Network

II II
'/

j '(--

2. Data link DJta-link
entity

1. Physical lbrdware

A hardware address is the address used by the physical and data-link layers of a network. Each
node must have a hardware address that is unique on the link that it is using.

In addition to receiving packets addressed to its own hardware address, a node will generally
accept packets that are addressed to the data link's broadcast hardware address (broadcast ID) or
to a multicast hardware address.

When a node transmits a packet that has the broadcast hardware address as its destination
address, then all nodes on the link will receive the packet. Each data link defines the value of its
broadcast hardware address.

A multicast hardware address is similar to the broadcast hardware address. When a node
transmits a packet that has a multicast hardware address as its destination address, then only a
specific subset of the nodes on the link will receive the packet. Some nodes on the link may not
have a multicast address; other nodes may have one or more multicast addresses.

In summary, a node on the link receives all packets sent to the node's unique hardware address,
to the broadcast hardware address, and to any of the node's multicast hardware addresses.

The protocol address of a node is the address that uniquely identifies a protocol stack in that
node among all other instances of stacks of that type on the network. A protocol address is used
by a protocol stack to identify a peer protocol stack to which packets are to be sent.

In addition to receiving packets that contain its unique protocol address, a protocol stack may
also receive packets addressed to a broadcast protocol address. Just as the broadcast hardware
address causes all nodes on the network to receive the packet at the data-link level, the broadcast
protocol address causes all nodes on the network to receive the packet at the level of the protocol
stack.

For example, a packet could be addressed to the broadcast protocol address for a protocol stack.
If all nodes with instances of that protocol stack belong to a particular multicast hardware address,
then the data link would use this multicast hardware address to ensure delivery of the packet to all
these nodes.

If a node supports more than one protocol stack and uses a single data link, then the node has a
protocol address associated with each stack but has only one hardware address.

AARP services
When a stack calls the data-link layer to send a packet to a particular node, the stack will supply the
destination address in terms of a protocol address. This address must first be resolved into the
corresponding hardware address of the destination node. AARP provides the services needed to
perform this address resolution.

AARP services 2-5

As indicated earlier, AARP can be used to map between any two sers of addresses at any
protocol level. Although rhis chapter discusses AARP's use in mapping between protocol addresses
and hardware addresses, the concepts presented here can be applied to the more general case.

An AARP implementation has as irs clienrs the various protocol stacks in a given node. AARP
uses the node's data link to

• translate a protocol address into a hardware address

Given a protocol address for a particular protocol family, AARP determines the hardware
address of rhe node that is currently using that protocol address.

• determine the node's protocol address

AARP dynamically assigns a protocol address to a stack in the node. AARP ensures that this
address is unique among all nodes on rhe network of that protocol family.

• ftlter incoming packets

AARP interposes irself in the packet reception path between rhe data link and each protocol
stack. For all data packers received by rhe node, AARP verifies that rhe packet's destination
protocol address is equal to either the node's protocol address or the broadcast protocol address
for that protocol family. Otherwise, AARP discards the packet.

AARP operation
AARP's key service is address resolution. For this purpose, each node has a cache of mappings
between the various protocol addresses and the corresponding hardware addresses. When one of
the node's protocol stacks asks AARP to resolve a given protocol address, AARP starrs by looking in
the cache for rhe appropriate mapping. In the event that rhe necessary mapping is not found in rhe
cache, rhen AARP queries all the nodes on rhe data link for rhe desired mapping by using rhe
broadcast or multicast capability of the underlying data link.

The query can be done by using the data link's broadcast capability. In this case, the query
packet sent out by AARP will be received by every node on the data link, regardless of whether that
node has a protocol stack corresponding to the protocol family of the requested protocol address.
The use of an appropriately set up multicast hardware address can help ensure rhat only rhe
relevant nodes receive rhe AARP query.

2-6 C H A PT E R 2 AppleTalk Address Resolution Protocol

In the description below, various AARP operations require the broadcasting of AARP packets.
The word broadcast here refers to broadcasting at the protocol stack level; it does not necessarily
have to be sent as a data-link broadcast. An AARP broadcast means that the AARP packet is to be
delivered to all nodes implementing the protocol family to which the AARP packet refers.

In each node, AARP maintains a cache of known protocol-to-hardware address mappings,
known as an Address Mapping Table CAMO. Such an AMT must be maintained for each protocol
stack that wishes to use AARP services. Whenever AW discovers a new address mapping, it
creates a corresponding AMT entry to reflect the new mapping. If no more space is available in the
AMT for the new mapping, AARP purges one of the existing AMT mappings by using some type of
least-recently-used algorithm. Likewise, AARP modifies existing AMT entries to reflect changes in
address mappings.

Address mapping

AARP queries for address mappings are made by using two types of AARP packets: AARP Request
and AARP Response packets.

Request packets

When asked by a client to determine the hardware address corresponding to a given protocol
address, AARP first scans the associated AMT for that protocol address. If the protocol address is
found in the AMT, AARP reads the corresponding hardware address and immediately delivers it to
the client.

If the hardware address is not found in the AMl', then AARP attempts to determine the
hardware address by querying all nodes supporting the corresponding protocol family. AARP uses
the data link to broadcast a series of AARP Request packets. The objective of broadcasting the
AARP Request packet is to discover the node that is t:sing the protocol address.

The AARP Request packet carries in it an identifier of the protocol family and the value of the
protocol address to be mapped.

Response packets

When a node receives an AARP Request packet, its AARP implementation compares the protocol
address from the packet with the node's protocol address for the indicated protocol family. If the
addresses match, then the node's AARP returns an AARP Response packet to the requester. This
packet contains the hardware address requested by the sender of the AARP Request packet.

AARP operation 2· 7

Upon receiving this Response packet, the requesting node's AARP inserts the newly discovered
mapping into the corresponding AMT. AARP then returns the requested hardware address to its
client.

If a Response packet is not received within a specified time interval, then AARP retransmits the
Request packet. This process is repeated a specified maximum number of times. If after these
retries a Response packet is not received, then AARP returns an error to its client. This error implies
that the protocol address is not in use and that no corresponding node exists on the link.

Dynamic protocol address assignment

Each protocol stack in a given node must have a protocol address. This address is usually assigned
when the stack is initialized. AARP provides one way of making this assignment. However, a
protocol stack may choose to assign its protocol address using a different method and then inform
AARP of this address. The only requirement is that the protocol address be unique across all nodes
of a given protocol family.

When a protocol stack asks AARP to pick a unique protocol address, AARP first chooses a
tentative protocol address for the node. It starts either by choosing an address value from some
nonvolatile memory or by generating a random number. If a mapping for that address value already
exists in the corresponding AMT, then AARP knows that another node on the network is using this
protocol address. It then picks a new random value for the protocol address until it identifies an
address that is not in that AMT.

Having picked a suitable tentative protocol address, AARP must then make sure that this
address is not being used by any other node on the data link. It does so by using the data link to
broadcast a number of AARP Probe packets, which contain the tentative protocol address. When a
node's AARP receives a Probe packet corresponding to one of its protocol stacks, it examines the
protocol address of that stack. If the Probe's tentative protocol address matches the receiving
node's protocol address, AARP sends back an AARP Response packet to the probing node.

If the probing node receives an AARP Response packet, then the tentative protocol address is
already in use and the node must pick a new tentative address and repeat the probing process. If
the probing node does not receive a Response packet after a specified amount of time, then it
retransmits the probe. If after a specified maximum number of retries the node has still not
received a response, then the node's AARP accepts the tentative address as the node's protocol
address. AARP returns this value to its client.

2-8 C H A PTE R 2 Apple Talk Address Resolution Protocol

Although it is unlikely, two nodes on the link could simultaneously pick the same value for
their tentative protocol addresses. To handle this situation properly, a probing node receiving a
Probe packet whose tentative address matches its own tentative address concludes that this
address is in use. The node then proceeds to select another tentative protocol address. While it is
sending Probe packets, a node should not respond to AARP Probe or Request packets.

Retransmission of AARP packets

As described above, AARP retransmits probes and requests until it either receives a reply or exceeds a
maximum number of retries. The retransmission interval and count depend on how thorough a
search the client requires.

In general, the retransmission interval and count for probes are determined based on the
characteristics of the particular data link. These values are chosen to minimize the possibility of
duplicate protocol addresses.

The retransmission interval and count for requests may be optionally provided by AARP's
clients.

Filtering incoming packets

For two reasons, it is desirable that AARP examine all incoming packets before they are delivered to
the node's protocol stacks. First, AARP can help verify that an incoming packet is actually intended
for the corresponding protocol stack. Second, AARP can gather address-resolution information
from every incoming packet. This information will help maintain AMTs in the node and may result
in fewer AARP packets being sent.

The filtering of incoming packets is an optional aspect of AARP; its use is not required.
In the discussion below, it is assumed that each protocol stack has supplied AARP with the

stack's protocol address and with any corresponding broadcast protocol address that the stack
recognizes. Furthermore, each stack must provide AARP with a mechanism for extracting the
destination protocol address from an incoming packet.

Retransmission of AARP packets 2-9

Verifying packet addresses

To verify that an incoming data packet is intended for one of the node's protocol stacks, AARP
examines the packet's destination protocol address. If this address does not match the node's
protocol address or any of the node's broadcast protocol addresses, then AARP must discard the
packet.

Gleaning address information

Since all incoming packets intended for one of the node's protocol stacks contain both the
hardware address and the protocol address of the sender, AARP can extract the corresponding
address mapping from the packet. This mapping can then be used to update the appropriate AMT.

Obtaining mapping information in this way is known as gleaning. The use of gleaning
eliminates the need to send an AARP Request packet when the stack itself responds to the packet
from which the information was gleaned.

In addition to its basic process of extracting mappings from AARP Response packets, AARP can
glean information from every AARP Request packet received by the node. Since these packets are
broadcast, every node's AARP receives them. AARP can extract a protocol mapping by reading the
hardware and protocol addresses of the packet's sender. AARP can insert this mapping into the
corresponding AMT.

It is important to note that AARP should not glean an address mapping from an AARP Probe
packet. The sender's protocol address in such packets is tentative and hence not reliable.

AMT entry aging

The foregoing discussion has described the mechanisms used by AARP for creating and updating
AMT entries in response to the various types of incoming packets.

Any particular entry of an AMT could become invalid, however, if the corresponding node is
switched off or otherwise becomes unreachable over the link. More seriously, a new node could
later come on line and pick the same protocol address. To ensure that an AMT's entries respond
correctly to such events, an AARP implementation should age these entries. AARP provides two
methods for AMT entry aging.

The first method is to associate a timer with each AMT entry. Every time AARP receives a
packet that causes the entry to be modified or confirmed, AARP resets that entry's timer. If the
timer expires, the entry has not been confirmed or updated for that period of time. The entry is
then declared to be unreliable, and AARP deletes it from the AMT.

2-10 CHAPTER 2 AppleTalk Address Resolution Protocol

If a client now requests a mapping of the protocol address of the deleted entry, then AARP will
have to send out an AARP Request. If an address resolution is achieved, then a new entry will be
inserted in the AMT.

The second method prescribes that an AMT entry be deleted whenever AARP receives a Probe
packet for the entry's protocol address. The reception of such a probe indicates the possibility that
the corresponding address might now be used by a different node; the entry should be considered
suspect. Note that this method might unnecessarily remove a valid entry if a new node probes for
the same protocol address.

Every implementation of AARP is required to use at least one of these two entry-aging
methods.

AARP packet formats
Each AARP packet starts with the data-link header for the particular link in use. The rest of the
packet consists of the AARP information. This AARP information consists of fields for the
hardware and protocol address pairs. In addition, there are fields identifying the data link and
protocol family for these addresses.
Specifically, the AARP information is

• a 2-byte hardware type, which identifies the data-link type

• a 2-byte protocol type, which identifies the protocol family

• a 1-byte hardware address length, which indicates the length in bytes of the hardware
address field

• a 1-byte protocol address length, which indicates the length in bytes of the protocol
address field

Immediately following these fields is a 2-byte function field that indicates the packet function
(I for AARP Request, 2 for AARP Response, or 3 for AARP Probe). The next two fields are the
hardware and protocol addresses of the sending node.

Finally, the last two fields of the packet contain a hardware and a protocol address respectively.
The actual values in these two fields depend on the type of the packet (its function field).

For an AARP Request packet, the hardware address is the unknown quantity being requested; it
should be set to a value of 0. The protocol address field should contain the address for which a
hardware address is desired.

For an AARP Response packet, these fields contain the hardware and protocol addresses of the
node to which the response is being sent.

AARP packet formats 2-11

For an AARP Probe packet, the hardware address should again be set to 0, and the protocol
address field should be set to the sender's tentative protocol address.

Figure 2-2 presents the generic AARP packet formats.

• Figure 2-2 AARP packet formats

AARP Request

I' b)1e (8 bits>-j

Data-link {!
fll'atler :

-

-

-

• • •

• • •

• • •

• • •

Hardware
type

Protocol
type

Hardware address length

Protocol address length

Function
(Request • I)

Source
hardware
address

Source
protocol
addrcs.~

0

Desired
protocol
address

• • •

-

-

-

AARP Response

I ' b)1C (8 bits)-"!

I I
• • •

-

I-

I-

• • •

llardware
type

Protocol
type

llardware address length

Protocol address length

Function
(Response : 2)

Source
hardware
address

Source
protocol
address

Destination
hardware
address

Destination
protocol
address

• • •

-

-

-

2-12 C H A PTE R 2 AppleTalk Address Resolution Protocol

AARPProbc

I ' b)1e (8 bi!S)-"1

I I
• • •

I-

I-

f-

• • •

Hardware
type

l'rmocol
type

Hardware address length

Protocol addres.~ length

Function
(Probe • 3)

Source
hardware
address

Tentative
protocol
address

0

Tentative
protocol
addres.s

• • •

-

-

-

•

• • •

Chapter 3 EtherTalk and TokenTalk
Link Access Protocols

CONTENTS

802.2 I 3-3

ELAP packet format I 3-5

TLAP packet format I 3-6

Address mapping in ELAP and TLAP I 3-7
Use of AARP by ELAP and TI.AP I 3-8
AARP specifics for ELAP and TLAP I 3-9
Zone multicas£ addresses used by ELAP and TLAP I 3-10

AppleTalk AARP packet formats on Ethernet and token ring I 3-11

•

3-1

W H EN A N A P P L ETA L K P R 0 T 0 C 0 L S T A C K asks the data link

to transmit an AppleTalk packet, its objective is to send the packet to the

destination node's AppleTalk protocol stack. Consequently, it will provide the

data link with the destination's AppleTalk protocol address, a 16-bit network

number and an 8-bit node !D. On LocalTalk, which supports no more than 254

nodes, the lower 8 bits of this address can be used directly as the data-link

address. Except when AppleTalk uses the LocalTalk data link, the data link will

be unable to understand and use the destination's protocol address directly.

In the cases of EtherTalk and TokenTalk, the AppleTalk network system uses

industry standards as the underlying data link. Both these data links use 48-bit

hardware addresses to identify the network nodes. Thus, EtherTalk and

TokenTalk products must translate the AppleTalk protocol address to the 48-bit

hardware address before the packet can be transmitted to its destination node.

EtherTalk and TokenTalk were developed by Apple as extensions of these

industry-standard data links to allow the use of industry-standard data links and

cabling in the AppleTalk network. The extended data-link protocol used by

EtherTalk is referred to as the EtherTalk Link Access Protocol (ELAP). The

extended data-link protocol used by TokenTalk is referred to as the TokenTalk

Link Access Protocol (TLAP). This chapter specifies ELAP and TLAP and also gives

an example of the use of the address resolution protocol described in Chapter 2.

ELAP and TLAP use the AppleTalk Address Resolution Protocol (AARP) to map

AppleTalk protocol addresses into 48-bit data-link addresses. They then

encapsulate the AppleTalk datagram before using the data-link to send the

packet. When the AppleTalk protocol stack is initialized, ELAP and TLAP, in

combination with DDP, use AARP to acquire the stack's AppleTalk protocol

address (node address). •

3-2 CHAPTER 3 EtherTalk and Token Talk Link Access Protocols

802.2

The Institute of Electrical and Electronics Engineers (IEEE) has specified a standard for Logical Link
Control (LLC) for use on Ethernet, token ring, and other data links. This standard, 802.2, involves a
set of interfaces, packet fonnats, and procedures for use on these data links. 802.2 Type 1 specifies a
connectionless or datagram service; 802.2 Type 2 is connection-based. ELAP and TLAP use 802.2 Type
1 packet fonnats. Details of the interfaces and procedures for 802.2 Type 1 are beyond the scope of
this book, however it is necessary to understand 802.2 Type 1 packet formats to be able to
understand packets as sent by AppleTalk on Ethernet and token ring.

802.2 defines the concept of a Service Access Point or SAP. SAPs are used to differentiate
between the different protocol stacks using 802.2 in a given node. A SAP is a 1-byte quantity, and
most SAPs are reserved for use by IEEE-standard protocols. One SAP, however, has been reserved by
the IEEE for use by all non-IEEE-standard protocols. This SAP, with value $AA, is the SAP to which
all AppleTalk packets are sent. However, it is also used by other protocol families. Therefore a way
of differentiating the various protocols using the $AA SAP was necessary. For this reason, all
packets sent to the $AA SAP begin with a 5-byte protocol discriminator. This protocol discriminator
identifies the protocol family to which the packet belongs. Use of the $AA SAP in this way is
known as the Sub-Network Access Protocol or SNAP.

Figure 3-1 shows the packet format for an 802.2 Type 1 SNAP packet. The packet consists of
four parts. First is the data-link header for the data link on which the packet is sent. Second is the
3-byte 802.2 Type 1 header. This header consists of the destination and source SAPs (both $AA for
SNAP) and a control byte indicating that Type 1 service is being used. The 802.2 header is followed
by the five-byte SNAP protocol discriminator. Finally, the SNAP protocol discriminator is followed
by the data part of the packet.

SNAP protocol discriminators used by AppleTalk include $080007809B for AppleTalk data
packets and $00000080F3 for AARP packets.

002.2 3-3

• Figure 3-1 SNAP packet format

ll:na-link lll':Kkr

H02.2
Type I hc:1dcr

~lhylc!Hhit-l~

I I
• • •

f-

1-

1-

r-

• • •

Dc:.~in:nion SAI' !SAAl

Sourn- SAl' (.\A l

Comrol h)'IL'! O.il

S:\AI'
prmol"ol dhnimin:nor

D:t1:1

• • •

-

-

-

-

• • •

3-4 CHAPTER 3 EtherTalk and Token Talk Link Access Protocols

ELAP packet format
Figure 3-2 shows the data packet format for AppleTalk packets on Ethernet. The ELAP header
consists of the 14-byte 802.3 header followed by the 802.2 and SNAP headers. 802.3 is an IEEE
standard which specifies the format of the data-link header bytes on Ethernet. This header consists
of the packet's 48-bit destination and source hardware (Ethernet) addresses and a 2-byte length
field indicating the length of the data that follows. 802.3 also specifies that if the total length of
the packet is less than 60 bytes (the minimum for Ethernet), pad bytes must be added after the
data to bring the packet size up to 60 bytes. Pad bytes are not counted in the 802.3 length field.

• Figure 3·2 ELAP packet format

ELAP header

• • •

• • •

Ethcm~t
d~stinatiun

Ethernet
sourc~

Length
odd

Dcstimtion SAP CSAA)

Comrol byte 1503)

S:\AI' protocol
dhnimin:uor

CS08000780')1l)

ApplcTalk
p:tcket

P:td
(if needed)

802.3 header

802.2 header

• • •

• • •

ELAP packet format 3·5

The SNAP protocol discriminator used by Apple Talk is $080007809B. The Apple Talk packet
continues, following the ELAP header, with the start of the DDP header.

'fLAP packet format
Figure 3-3 shows the dara packet format for AppleTalk packets on a token ring network. The
TI..AP header consists of a 14-byte token ring header followed by optional source routing
information and then by the 802.2 and SNAP headers. The token ring header begins with two bytes
that are used by the token ring data link. These bytes are followed by the packet's 48-bit
destination and source hardware addresses.

The token ring header is followed by variable length source routing information. Source routing
is a method used on token ring to surpass the limits on length and number of devices that exist on
a single token ring network. Through use of source routing bridges, token ring networks may be
combined so as to appear to the upper protocol layers as a single token ring network. The source
routing information is used to specify (or in some cases to collect) the route followed by the
packet through the source routing bridges. An implementation of TI..AP that supports source
routing must take into account acquisition and maintenance of source routing information, as this
is not performed by the token ring data link.

When source routing information is sent, the high-order bit of the source hardware address is
set. (This bit is available because it is never part of a hardware address.) A set bit indicates that
between 2 and 18 bytes of source routing information immediately follow the token ring header.

As in ELAP, the SNAP protocol discriminator used by AppleTalk is $080007809B. The AppleTalk
packet continues, following the TI..AP header, with the start of the DDP header.

3-6 CHAPTER 3 EtherTalk and TokenTalk Link Access Protocols

• Figure 3·3 TLAP packet format

TU\.Ph.:-Jder • • •

-
-
-
-
-

• • •

L"st:d intcrmlly by
token ring data link

Token ring
destination

Token ring
source

0 - Jl!hytcs
of source routing

infom1ation

Destination SAP (SAA)

Source SAP ($AA)

Control h)k ($03)

S:\AP protocol
discriminator

(S0800<r809B)

ApplcT:tlk
packet

• • •

1----.,

-

- } -
-
-
-

• • •

802.2 header

Sl'\AP header

Address mapping in ELAP and TLAP
Ethernet and token ring provide addressing schemes structurally similar to that of LLAP. Nodes on
Ethernet and token ring links are identified by unique addresses, and a broadcast capability is
provided. These links also provide a multicasting capability, which is used by ELAP and TI.AP to
minimize the interference of AppleTalk broadcast packets on non-AppleTalk nodes.

Address mapping in ELAP and TLAP 3·7

However, Ethernet and token ring addresses are different from those expected by the
AppleTalk protocol family. Instead of using a dynamically assigned 8-bit node ID, they use a
statically assigned 48-bit hardware address. Their broadcast hardware address is also different than
AppleTalk's broadcast protocol address of 255 ($FF).

There are conditions under which the Apple Talk protocol family will ask ELAP or TLAP to send
a packet directly to a hardware address. If this is the case, no address mapping is performed and the
packet is sent directly to the desired address.

Use of AARP by ELAP and TI.AP

When the Apple Talk stack is initialized, ELAP or TLAP use AARP's dynamic protocol address
assignment to pick an AppleTalk node address unique to the data link on which the node is
operating. The network number part of this node address is chosen from within the network
number range assigned to the network. The actual use of AARP to choose this address is described
in Chapter 4, "Datagram Delivery Protocol. •

Unlike the LocalTalk Link Access Protocol (LLAP), ELAP and TLAP make no distinction between
server and workstation nodes when they perform this dynamic address assignment. The hardware
for those data links provides enough buffering to reduce the chance of an AARP Probe packet being
lost by busy nodes. Consequently, the probability of two nodes acquiring the same address is low.

Once an AppleTalk node address has been obtained, AppleTalk operation proceeds in the normal
fashion. When ELAP or TLAP is asked to send a packet, it looks at the requested destination address
to determine how to proceed. There are three possibilities.

1. If ELAP or TLAP is asked to send the packet directly to a 48-bit hardware address, it calls the
underlying data link to perform this operation. Certain operations in DDP require the ability to
send a packet directly to a specified hardware address.

2 If ELAP or TLAP is asked to send the packet to an AppleTalk address that is not a broadcast
AppleTalk address, it uses AARP to map the packet's destination address into the
corresponding hardware address and uses the underlying data link to send the packet to this
hardware address. A broadcast AppleTalk address (detailed in Chapter 4), is any address whose
node ID (low-order eight bits) is $FF.

3·8 C H A PTE R 3 EtherTalk and TokenTalk Link Access Protocols

3. If EI.AP or TLAP is asked to send the packet to a broadcast Apple Talk address, it must send
that packet in such a way that all AppleTalk nodes on that data link receive the packet. It is also
desirable, however, that non-AppleTalk nodes on the same data link not be interrupted by these
packets. The multicasting capability of the Ethernet and token ring data links is utilized to
accomplish this goal. A specific multicast hardware address is assigned for AppleTalk
broadcasts. EI.AP or TI.AP, in each AppleTalk node, registers itself with the underlying data link
to receive all packets addressed to that multicast hardware address. Packets addressed to a
broadcast AppleTalk address are then sent by EI.AP or TLAP to this multicast address and
received by all AppleTalk nodes on the data link. Since non-AppleTalk nodes will not have
registered on this multicast address, they will not be interrupted by the packet.

The multicast address used by EI.AP for AppleTalk broadcasts is $090007FFFFFF. The multicast
hardware address used by TI.AP for Apple Talk broadcasts is $C00040000000. EI.AP and TLAP also
use these multicast addresses for AARP broadcasts.

AARP specifics for EIAP and TLAP

EI.AP and TI.AP impose restrictions on the tentative AppleTalk node address that AARP picks when
anempting to dynamically choose a unique AppleTalk node address. These node IDs must not be
chosen by AARP: Node ID 0 (invalid as an Apple Talk node ID), $FF (AppleTalk broadcast node !D),
and $FE (reserved as an AppleTalk node ID on Ethernet and token ring).

In addition, during the address acquisition process, EI.AP and TLAP are asked by the AppleTalk
stack to choose the network number part of the node address in a specific range. Thus, when
picking tentative node addresses, AARP must be sure to pick them in this requested range.

Incoming data packets contain the source data-link address and the source AppleTalk address.
Source address gleaning can be performed easily by AARP by obtaining the source's AppleTalk and
data-link addresses from the packet and then updating the AMT. This gleaning is not a required part
of EI.AP or TI.AP. For example, some developers might consider the computational overhead of
gleaning to be excessive and therefore not include the capability in their implementation.

The AARP probe-retransmission interval and count for EI.AP and TI.AP is specified as 1/5 second
and 10 retransmissions, respectively. For AARP requests, the corresponding parameters are left to
the discretion of the specific implementer. AARP request and probe packets are sent to the same
multicast hardware address used for AppleTalk broadcasts and thus interrupt only AppleTalk
nodes. This address is $090007FFFFFF for ELAP and $C00040000000 for TI.AP.

Address mapping in EI.AP and TI.AP 3-9

Zone multicast addresses used by EIAP and nAP

AppleTalk data links should allocate a number of multicast addresses for use in the name lookup
process, as indicated in Chapter 8, "Zone Information Protocol." ZIP and NBP use these addresses to
minimize the effect of the name lookup process on nodes not in the desired zone. The specific zone
multicast addresses defmed for use by ELAP and TI.AP are illustrated in Figure 3-4.

• Figure 3-4 ELAP and TI.AP multicast addresses

ELAP TLAP

AppleTalk broadcast address $090007FFFFFF $C00040000000

Zone multicast addresses $090007000000 $C00000000800
When used with the address SCOOOOOOOlOOO
assignment algorithm described SC00000002000
in Chapter 8, the first address $C00000004000
in each list represents a[O]. $C00000008000

$C00000010000
$C00000020000

2;3 addresses $C00000040000
$C00000080000
$C00000100000
SC00000200000
$C00000400000
$C00000800000
$C00001000000
$C00002000000
$C00004000000
$C00008000000
$C00010000000

$0900070000FC SC00020000000

3-10 CHAPTER 3 EtherTalk and TokenTalk Link Access Protocols

AppleTalk AARP packet formats on Ethernet and token ring
Each AARP packet on Ethernet and token ring begins with the same set of headers used by ELAP or
TLAP. The SNAP protocol discriminator defined for AARP is $00000080F3. Following these headers, 6
bytes of AARP information identify the packet as requesting an AppleTalk-to-Ethernet or
AppleTalk-to-token-ring address mapping:

• a 2-byte hardware type, with value of 1, indicating Ethernet, or value of 2, indicating token ring
as the data link

• a 2-byte protocol type, with value of $809B, indicating the AppleTalk protocol family

• a 1-byte hardware address length, with value of 6, indicating the length in bytes of the field
containing the Ethernet or token ring address

• a 1-byte protocol address length, with value of 4, indicating the length in bytes of the field
containing the Apple Talk protocol address (The high byte of the address field must be set to 0,
followed by the 2-byte network number, and then the 1-byte node ID.)

The rest of the AARP packet contains the source and destination hardware and Apple Talk
addresses, the latter always in 4-byte fields with the upper byte set to 0. Figure 3-5 shows the
AARP packet formats for Ethernet or token ring.

AppleTalk AARP packet formats on Ethernet and token ring 3-11

• Figure 3·5 AppleTalk-Ethemet or AppleTalk-token ring AARP packet fonnats

AARP Request

r------1 byte (8 bitsl -j

Dala-link { : •
header • :

I 802.2{ :
header •

f-

f-

f-

-

• • •

• • •

• • •

• • •

5\AP
protocol discriminator

(S00000080F 3 l

Hardware type
(Ethernet = I l

<Token ring • ll

Protocol ty~
(Appil:Talk = S809Bl

IIJrdwarc address length • 6

Protocol address length = 4

Function
(Rcq UCSt • I)

.. Source
hardware address

(6 bj1es)

Source
ApplcTalk address

(.j h)1CS)

0
(6 b)1eS)

Desired
ApplcTalk address

(4 b)1CS)

• • •

-

-

-

-

AARP Response

j-1 bytc(Sbil.')) ----1
• • • • • •

• • • • • •

S\AP
f- protocol discriminator -

(S00000080F3)

Hardware type
f- (Ethernet = I) -

(Token ring = 2)

f- Protocol type
(ApplcTalk = S809Bl

-

llmlw:uc address length • 6

Protocol :ICidrcss length = 4

Function - -
(Response = 2)

Source • hardware :1ddress • • (6 b)1CS)

Source
• Apple Talk address • • <4 bytes)

• Destination

• h;trdwarc addre;;,
• (6 bytes)

• Destination

• AppleTalk address
• (4 bytes)

3·12 CHAPTER 3 EtherTalk and TokenTalk Link Access Protocols

AARPProbe

r------1 byte (8 bits) -j

• • • • • •

• • • • • •

S:\AP
f- protocol discriminator -

(S00000080F3)

Hardware type
f- (Ethernet • I) -

(Token ring • 2)

f- Protoml type
(Apple Talk • S809B)

-

Hardware address length = 6

Protocol address length • 4

f- Function -
(Probe · 3)

Source
hardware address

<6 b)1esl

Source
ApplcTalk address

(4 bytes)

0
(6 b)1CS)

Destin:llion
ApplcTalk address

(4 bytes)

Part II End-to-End Data Flow

P A R T I of Inside AppleTalk specifies the LocalTalk, EtherTalk, and
TokenTalk link access protocols. These protocols govern the operation of
local-area data links that can be used to connect network nodes in a
geographically restricted area.

In particular, LocalTalk can be used to connect up to 32 network nodes
with a maximum cumulative link span of 300 meters. EtherTalk and
TokenTalk use standard networking technology to build a local area network
(LAN) with a large number of nodes and a cable length of up to several
kilometers.

Larger networks than those permitted by these local-area data links can
also be set up. This extension can be achieved in two ways:

• by using bridges to extend a single LAN or data link

• by interconnecting several LANs through routers to build an internet

Bridges and routers are intelligent devices that extend network systems
by storing and forwarding packets on a path from the packet's source node
to its destination node.

A bridge operates at the data-link layer Oevel 2 of the ISO-OSI reference
model in Figure 1-9). It examines the data-link level destination addressing
information of packets received by it on the link segments to which the
bridge is connected. It then retransmits each packet on the appropriate
segment toward the packet's destination node. In effect, bridges extend the
effective length and maximum number of nodes limit of a single data link or
local area network (LAN). Bridges are widely used in Ethernet-based systems
such as DECnet™, and source-routing bridges are widely used in token ring
based systems. Since bridges simply extend a particular LAN, their use is
transparent to the various protocols of the network system.

Routers are used to interconnect several different LANs or data links
situated over a widely distributed geographical area. Routers forward packets
by using an address extension defined at the network layer (level 3 of the ISO
OSI reference model).

This address extension, known as a network number, is provided by the
Datagram Delivery Protocol (DDP), which is described in Chapter 4,
"Datagram Delivery Protocol."

While bridges allow extension of a single data link or LAN, routers can be
used to interconnect dissimilar data links into a single internet. In particular,
as shown in Figure 4-1, routers can be used to enable communication
between nodes on LocaiTalk, EtherTalk, and TokenTalk data links, thus
forming an AppleTalk internet incorporating dissimilar link technologies.

Routers forward packets by consulting routing tables. The Routing Table
Maintenance Protocol (RTMP), specified in Chapter S, governs this table
maintenance operation in all AppleTalk routers.

The AppleTalk Echo Protocol (AEP) of Chapter 6 provides the ability to
measure round-trip travel times between any two nodes of an AppleTalk
internet. This information is useful in a variety of network management
functions and for setting retry timers in various transport-level and session
level protocols. •

Chapter 4 Datagram Delivery Protocol

CONTENTS

Internet routers I 4-5

Sockets and socket identification I 4-5

Network numbers and a node's AppleTalk address I 4-6

Special DDP node IDs I 4-6

AppleTalk node address acquisition I 4-7
Node address acquisition on nonextended networks I 4-8
Node address acquisition on extended networks I 4-8

DDP type field I 4-9

Socket listeners I 4-10

DDP interface I 4-10
Opening a statically assigned socket I 4-11
Opening a dynamically assigned socket I 4-12
Closing a socket I 4-12
Sending a datagram I 4-12
Datagram reception by the socket listener I 4-13

DDP internal algorithm I 4-13

DDP packet format I 4-13
Short and extended headers I 4-14
DDP checksum computation I 4-17
Hop counts I 4-17

4-1

DDP routing algorithm I 4-18
Optional "best router" forwarding algorithm I 4-20

Sockets and use of name binding I 4-21

Network number equivalence I 4-21

•

4-2 CHAP TE R 4 Datagram Delivery Protocol

T H E L 0 C A L TALK L I N K A C C E S S P R 0 T 0 C 0 L (LIAP) and

other AppleTalk data links provide a best-effort, node-to-node delivery of

packets on a single AppleTalk network. The Datagram Delivery Protocol

(DDP) is designed to extend this mechanism to the socket-to-socket delivery

of datagrams over an AppleTalk internet. Datagrams are packets of data

carried by DDP between the sockets of an internet. An AppleTalk internet

consists of one or more AppleTalk networks connected by intelligent nodes

referred to as internet routers (IRs), as shown in Figure 4-1.

+ Note: Internet routers should not be confused with gateways. Gateways

are nodes that separate and manage communication between different

protocol families.

This chapter specifies DDP. In particular it describes:

• sockets and their relation to DDP

• acquisition of a DDP network number and node ID

• calls at the DDP interface

• the algorithms used within DDP •

Datagram Delivery Protocol 4-3

• Figure 4-1 AppleTalk internet and internet routers (IRs)

EtherTalk

Router

···----------~----~----------........ Backbone network

LocalTalk

4-4 C H A P T E R 4 Datagram Delivery Protocol

Internet routers
IRs are packet-forwarding agents. Packets can be sent between any two nodes of an internet by
using a store-and-forward process through a series of IRs. An IR often consists of a single node
connected to two or more AppleTalk networks; it might also consist of two nodes connected to
each other through a communication channel. In the latter case, the channel between the two
halves of the IR could take any of the following forms:

• a leased or dial-up line

• another network (for example, a wide-area packet-switched or circuit-switched public
network)

• a higher-speed broadband or baseband local area network (IAN) used as a backbone

Sockets and socket identification

Sockets are logical entities within the nodes connected to an AppleTalk internet. Sockets are owned
by socket clients. Socket clients are typically processes (or functions in processes) implemented in
software in the node. A socket client can send and receive datagrams only through sockets that it
owns.

Each socket within a given node is identified by an 8-bit socket number. Socket numbers are
treated as unsigned integers. There can be at most 254 different socket numbers in a node. (The
values 0 and 255 are reserved and cannot be used to identify sockets.)

Sockets are classified into two groups: statically assigned and dynamically assigned. Statically
assigned sockets (SASs) have socket numbers in the range 1-127. SASs are reserved for use by
clients such as the lower-level AppleTalk protocols (for example, Name Binding Protocol (NBP) and
Routing Table Maintenance Protocol (RTMP)). Socket numbers 1-63 are specifically reserved for use
by Apple. Socket numbers 64-127 are available for unrestricted experimental use. Use of these
experimental SAS numbers is not recommended for released products, since there is no mechanism
for eliminating conflicting usage of the same socket(s) by different developers (see "Sockets and
Use of Name Binding" later in this chapter). See Appendix C for a summary of socket number usage.

Socket numbers 128-254 are assigned dynamically by DDP upon request from clients in that
node; sockets of this type are known as dynamically assigned sockets (DASs).

Sockets and socket identification 4-5

Network numbers and a node's AppleTalk address
Each AppleTalk network in an internet is assigned a range of 16-bit network numbers. These ranges
are specified in such a way that no two ranges in an internet have any network numbers in
common. An AppleTalk device is identified by a 16-bit network number, chosen from within the
range assigned for the node's network, combined with its 8-bit, dynamically assigned AppleTalk
node ID. The details of choosing this unique network number/node ID combination are discussed
in the next section. Combining the socket number with the node's network number and node ID
enables any socket on the internet to be uniquely identified. The internet socket address of a
socket consists of its socket number and the node ID and network number of the node in which
the socket is located. As a result, the source and destination sockets of a datagram can be fully
specified by their internet socket addresses.

The network number 0 is reserved to mean unknown; by default it specifies the local network
to which the node is connected. Packets whose destination network number is 0 are addressed to a
node on the local network. This address allows systems consisting of a single AppleTalk network
to operate without network numbers. Network numbers $FFOO through $FFFE are reserved for
nodes to use during the startup process and at times when an internet router is unavailable. Their
use is described in the following sections.

Special DDP node IDs
Certain node IDs are reserved and have special meaning to DDP. These node IDs should never be
chosen as a part of an AppleTalk node address. Node ID $FF indicates a broadcast to all nodes with
a network number equal to that indicated by the specified network number. As long as this
network number is nonzero, the packet is refered to as a network-specific broadcast. Although
it will be received by all AppleTalk nodes on the data link, it should only be accepted by those with
the indicated network number.

If the network number is zero, node ID $FF indicates either a network-wide or zone-specific
broadcast. A network-wide broadcast is sent to all Apple Talk nodes on the data link and should
be accepted by all those nodes. A zone-specific broadcast is sent to a particular zone multicast
address. DDP should always accept such a packet, however higher level protocols like NBP and ZIP
will discard the packet if it is not intended for the node's zone (see Chapter 8, "Zone Information
Protocol," for details of zone multicast addressing).

4-6 C H A P T E R 4 Datagram Delivery Protocol

Node ID 0 indicates any router on the network specified by the network number part of the
node address. Packets addressed to node ID 0 are routed through the internet until they reach the
flrst router directly connected to a network whose range includes the indicated network number.
The packet is then delivered to that router. This facility is used by NBP.

Node ID $FE is reserved on EtherTalk and Token Talk networks and should not be used as a
node ID. This address is a valid node ID on LocaiTalk networks.

AppleTalk node address acquisition
DDP is responsible for acquiring a node's AppleTalk address at startup time. This address must be
unique throughout the AppleTalk internet. DDP combines with the underlying data link being used
by the node, and with internet routers on that data link, to acquire this address. The details of
DDP's AppleTalk node address acquisition process depend on the type of network to which the
node is connected.

A nonextended network is an AppleTalk network on which each node's 8-bit AppleTalk node
ID is unique. Thus no more than 254 nodes can be concurrently active on such a network (node IDs
0 and $FF are reserved). Nonextended networks are assigned exactly one network number and
exactly one zone name (zones are described in Chapter 7, "Name Binding Protocol"). LocaiTalk is an
example of a nonextended network.

An extended network is an AppleTalk network on which nodes are differentiated by unique
network number/node ID pairs. Theoretically, up to 16 million or so nodes can be concurrently
active on such a network. Extended networks are assigned a range of network numbers, and all
network numbers are chosen from within this range. A second aspect of extended networks is that
they can be assigned multiple zone names.

The range of network numbers on an extended network determines the maximum number of
concurrently active devices. The maximum number of concurrently active devices on an extended
network is equal to the number of network numbers multiplied by the number of possible node
IDs. In addition to node IDs 0 and $FF, node ID $FE is reserved on extended networks, and thus
there are 253 possible node IDs per network number.

An extended network can be thought of as a number of nonextended networks, each residing
on the same physical data link, and each capable of supporting up to 253 nodes. EtherTalk and
Token Talk are examples of extended networks.

AppleTalk node address acquisition 4-7

Node address acquisition on nonextended networks

The acquisition of an AppleTalk node address on a nonextended network is greatly simplified by the
fact that all nodes on the data link have a unique 8-bit AppleTalk node ID. This being the case, the
network needs only one network number to guarantee all nodes on it have addresses that are
unique in the internet. The underlying data link (LLAP for LocalTalk) is used to dynamically assign
this unique node ID. The node's network number is then obtained from a router using an RTMP
Request packet. Details of this exchange are specified in Chapter 5, "Routing Table Maintenance
Protocol."

If a nonextended network is operating without a router, no reply will be received from the
RTMP Request. In this case, the network number is set to zero. If a router later becomes available,
the network number is then set to the one specified by the router.

Node address acquisition on extended networks

The acquisition of an AppleTalk network number and node ID on an extended network takes place
in two steps. First a provisional node address is obtained through the data link for purposes of
talking to a router and thereby discovering the network number range that is valid for the network
to which the node is connected. Following this, the node's actual network number and node ID are
obtained through the underlying data link.

When a node is started for the first time on an extended network, it asks the underlying data
link for a provisional node address. The node ID part of this address is chosen at random, and the
network number part is chosen from the range $FFOO to $FFFE. This range is reserved for the
startup process, and is referred to as the startup range.

If the node had been previously started on the extended network, it will have saved the last
network number and node ID it used on that network (in non-volatile or disk storage). Upon
startup, the node instructs the data link to obtain its provisional node address by trying this "hint"
first. If this "hint" is in use, the data link should then try all node IDs with the same network
number as the hint. In this way, there is a good chance that the node's provisional node address will
include a network number within the network number range for its data link, and there will be no
need to obtain another one. If all node IDs with the old network number are in use, the node
should proceed to obtain a provisional node address in the startup range. Optionally, it could have
saved the entire range of network numbers for the network it was last on and could try other valid
network numbers in this range before proceeding to the startup range.

4-8 C H A P T E R 4 Datagram Delivery Protocol

Once a provisional node address has been acquired, the node can proceed to talk to a router to
find out the actual network number range in which its network number should be chosen. This is
done through a ZIP GetNetlnfo request, details of which are described in Chapter 8, "Zone
Information Protocol." The response to this request includes the network number range that has
been assigned to the node's network. If the node's provisional address contains a network number
within this range, it is kept as the node's final network number and node ID. Otherwise, the node
instructs its data link to obtain a unique address containing a network number within the range
specified by the router. In either case, the node's final network number and node ID are saved in
long-term storage for the next time the node starts up.

In the case of an extended network operating without a router, no reply will be received from
the GetNetlnfo request. In this case, the node's provisional node address becomes its final network
number and node 10. Extended networks do not have the concept of a zero network number when
no router is available, since that would limit such networks to 253 nodes. If a router does become
available later, the node must verify that its network number is within the range specified by the
router. This will generally be the case as long as the node was previously started up on its current
network.

In the rare case where a router becomes available after the node has started up and the node's
network number is not within the range specified by the router, a new address must be acquired
before the node can communicate on the internet. However, since the node has been active on its
local network for some time, it may already have established network connections. These
connections are usually based on the node's address, and thus will probably break when a new node
address is acquired. For this reason, the node may continue to operate for some time as if the router
had not become active.

During the startup process, the node also acquires information about its zone. Details of this
process are specified in Chapter 8, "Zone Information Protocol."

DDP type field

The AppleTalk architecture allows the implementation of a large number (up to 255) of parallel
protocols that are clients of DDP. Note that socket numbers are not associated with a particular
protocol type and should not be used to demultiplex among parallel protocols at the transport level.
Instead, a 1-byte DDP type field is provided in the DDP header for this purpose. See Appendix C for
a summary of the use of the DDP type field.

DDP type field 4-9

Socket listeners

Socket clients provide code, referred to as the socket listener, that receives datagrams addressed
to that socket. The specific implementation of a socket listener is node-dependent. For efficiency,
the socket listener should be able to receive datagrams asynchronously through either an interrupt
mechanism or an input/output request completion routine.

The code that implements DDP in the node must contain a data structure called a sockets
table to maintain an appropriate descriptor of each open socket's listener.

DDP interface

As shown in Figure 4-2, the DDP interface is the boundary at which the socket client can issue calls
to and obtain responses from the DDP implementation module in the node. The DDP
implementation module supports the following four calls:

• opening a statically assigned socket

• opening a dynamically assigned socket

• closing a socket

• sending a datagram

These calls are described in the following sections.

4-10 C H A P T E R 4 Datagram Delivery Protocol

• Figure 4-2 Socket terminology

Socket client

DDP interface
requests

DDP interface

DDP implementation module

rs:=-1
~

Opening a statically assigned socket

Datagram
received for
the socket

~ >
Dialog with
remote DDP
implementation module

This call specifies the socket number (in the range 1-127) and the socket listener for that socket.
The call returns with a result code, which has the following possible values:

Result code

success

error

Meaning

socket opened
various cases such as socket already open, not a statically assigned socket (outside
the permissible range), or sockets table full

DDP interface 4-11

Opening a dynamically assigned socket

Opening a dynamically assigned socket is similar to opening a statically assigned socket except that
the caller does not specify the socket number. The call returns a result code and, if successful, the
opened socket's number (in the range 128-254). The result code has the following possible values:

Result code
success

error

Meaning

socket opened

various cases such as sockets table full or all dynamic sockets in use

Closing a socket

This call specifies the number of the socket to be closed. If the socket is currently open, it is
removed from the sockets table. The result code has the following possible values:

Result code
success

error

Meaning

socket closed

no such socket

Sending a datagram

This call specifies the number of the source socket, the internet address of the destination socket,
and the DDP type field value. The length and location of the data part of the datagram are also
provided in the request. Since DDP includes an optional software checksum in internet datagrams,
the caller must specify whether or not this checksum is to be generated. The result code has the
following possible values:

Result code
success

error

Meaning

datagram sent

sending socket not open or not valid; datagram too long

4.12 C H A P T E R 4 Datagram Delivery Protocol

Datagram reception by the socket listener

In addition to the four calls just described, a socket listener mechanism must be provided for the
reception of datagrams. Although details of the socket listener are not specified (since these are
implementation-dependent), some mechanism is needed to deliver datagrams within the node to
the destination client The DDP module should attempt this delivery only if the destination socket
is currently open. DDP must discard data grams if they are addressed to a closed socket or if the
datagram is received with an invalid DDP checksum.

DDP internal algorithm

Since DDP is a simple, best-effort protocol for internet-wide, socket-to-socket delivery of
datagrams, it does not provide a mechanism for recovery from packet loss or error situations.

The primary function of the DDP implementation module is to form the DDP header on the
basis of the destination address and then to pass the packet to the appropriate data link. Similarly,
for packets received from the data-link layer, DDP must examine the datagram's destination
address in the DDP header and route the datagram accordingly. Details of this operation depend on
whether or not the node is an IR (see "DDP Routing Algorithm" later in this chapter).

DDP packet format

A datagram consists of the DDP header followed immediately by the data. The first 2 bytes of the
DDP header contain a 10-bit datagram length field. The value in this field is the length in bytes of
the datagram counted by starting with the first byte of the DDP header and including all bytes up
to the last byte of the data part of the datagram. Upon receiving a datagram, the receiving node's
DDP implementation must reject any datagram whose indicated length is not equal to the actual
received length. The maximum length of the data part of a datagram is 586 bytes; longer datagrams
must be rejected.

DDP packet format 4-13

Short and extended headers

The DDP header also contains the source and destination socket addresses and the DDP type. Each
of these addresses could be specified as a 4-byte internet socket address. However, for datagrams
whose source and destination sockets are on the same network, the network number fields are
unnecessary. Similarly, for such datagrams on LocalTalk, the source and destination node IDs are
found in the LLAP header and would be redundant in the DDP header. Therefore, DDP uses two
types of header-short and extended. A short DDP header is used on nonextended networks
when source and destination sockets have the same network number. An extended DDP header
is used for exchanging datagrams between sockets with different network numbers. DDP uses the
value of the LLAP type field to determine if the packet has a short or an extended DDP header. The
LLAP type field value is 1 for the short and 2 for the extended.

A datagram with a short header is shown in Figure 4-3. The short DDP header is 5 bytes long.
The first 2 bytes of the header contain the datagram length, with the most-significant bits in the
first byte. The upper 6 bits of this byte are not significant and should be set to 0. The datagram
length field is followed by a 1-byte destination socket number, a 1-byte source socket number, and
a 1-byte DDP type field. Datagrams with short headers can be sent only if the source and
destination sockets have the same network number. Short headers are used solely for efficiency
reasons; in fact, an implementation of DDP is permitted to send datagrams with extended headers
even when source and destination sockets are on the same network. Extended headers are required
on extended networks; datagrams with short headers should never be used on extended networks.

4-14 C H A P T E R 4 Datagram Delivery Protocol

• Figure 4-3 DDP packet format (short header)

!.LAP header

DDP header

I ' hytc (8 bits)~

~-- ······· · ······ · ·· · · ··~

• • •
'
'

• • •
L-- -------------- ----- --

:

• • •

I.L.\P type = I ,--- r-
oo ooo o l"

I I I I I . . l.

I
Datagr.un length
I I I I I

DcSiination s<x-ket
number

Source socket
number

DIW type

Datagram data
(0 to 586 bytes)

I I
L r-

• • •

MSB

LSB

A datagram with an extended header is shown in Figure 4-4. The extended DDP header is 13 bytes
long. It contains the fu ll internet socket addresses of the source and destination sockets as well as
the datagram length and DDP type fields. For such packets, there is a 6-bit hop count field in the
most-significant bits of the first byte of the DDP header. See "Hop Counts" later in this chapter. In
addition, the extended header may include an optional2-byte (1()-bit) DDP checksum field. See
"Checksum Computation" later in this chapter. All 2-byte fields are specified with the high byte
ftrst. Datagrams exchanged between sockets on different AppleTalk networks and on any
extended network must use an extended header.

DDP packet format 4-15

• Figure 4-4 DDP packet fonnat (extended header)

I.L>\1'
header

DDP header

-

-

1 - ----- -- - - ------------- ~

• • • • • • . .
L- -------- --- --- --- -----. . . LLAI' t)'(X' ~ 2 >: _c= t-

0

I

0 I Hop count j_'_~ -

'-

t-

r-

t-

• • •

I

_l _l _l

Datagmm length
I _l _l _l _l

DDP checksum

Destination
network number

Source
ncrwork number

Destination
node ID

Source
node ID

Destination
socket number

Source
socket number

ODP type

Datagram data
(0 to 586 bytes)

_l_t
L

-

-

-

t-

• • •

~ISU

LSU

4-16 CHAPTER 4 Datagram Delivery Protocol

DDP checksum computation

The DDP checksum is provided to detect errors caused by faulty operation (such as memory and
data bus errors) within routers on the internet. Implementers of DDP should treat generation of
the checksum as an optional feature. The 16-bit DDP checksum is computed as follows:

CkSum : = 0 ;

FOR each datagram byte starting with the byte immediately following the
Checksum field

REPEAT the following algorithm:

CkSum := CkSum + byte; (unsigned addition)

Rotate CkSum left one bit, rotating the most significant bit i nto the
least significant bit;

IF, at the end, CkSum = 0 THEN
CkSum := $FFFF (all ones).

Reception of a datagram with CkSum equal to 0 implies that a checksum is not performed.

Hop counts

For datagrams that are exchanged between sockets on two different AppleTalk networks in an
internet, a provision is made to limit the maximum number of IRs the datagram can traverse.
Limiting this number is done by including in such internet datagrams a hop count field.

The source node of the datagram sets this field to 0 before sending the datagram. Each IR
increases this field by 1. An IR receiving a datagram with a hop count value of 15 should not
forward it to another IR; if such a datagram's destination node is on a network directly connected
to the IR, then the IR should send the datagram to that destination node. Otherwise, the datagram
should be discarded by the IR. This provision is made to filter out the internet packets that might
be circulating in closed routes. Such a closed route (loop) is a transient situation that can occur for a
short period of time while the routing tables are being updated by the RTMP. Non-IR nodes ignore
the hop count field.

The upper 2 bits of the hop count currently are not used by DDP but are reserved for future use
(such as the extension of the maximum value of the hop count beyond the currently allowed value
of 15).

DDP packet format 4-17

DDP routing algorithm

A datagram is conveyed from its source to its destination socket over the internet through IRs.
The DDP implementation in the source node examines the destination network number of the
datagram and determines whether or not the destination is on the local network. If the destination
node is on the local network, the data-link layer is called to send the packet to the destination node.
(The short DDP header can be used if the nodes are on a nonextended network.) However, if the
destination is not on the local network, DDP builds the extended header and calls the data link to
send the packet to an !R on the local network. (If there is more than one such IR, any one will do.)
IRs examine the destination network number of the datagram and use routing tables to forward
the datagram to subsequent IRs until an IR is reached that is connected to the destination
network. (Routers forward datagrams through the data links of intervening local networks.) At the
destination network, the datagram is sent to its destination node through the local network's
data-link protocol.

Each node on an AppleTalk network maintains (as an internally stored value) the network
number range of the local network to which it is attached. The DDP implementation in a
datagram's source node determines whether the destination network is the local network by
comparing the destination network number to the internally stored network number range. If the
destination network number is in the local network number range, the packet can be delivered to a
node on the local network. The packet should also be delivered locally if the destination network
number is in the startup range ($FFOO-$FFFE).

A special case arises on a nonextended network when the internally stored value is 0 (unknown).
In this case, if the datagram's destination network number is not 0, then DDP should assume that
the packet is intended for a node on the local network. However, DDP must in this case build an
extended DDP header and call the data link to send the packet to the specified destination node on
the local network. The extended DDP header enables the receiving node to throw away the packet
if that node's DDP module determines that it was not the intended recipient (that is, if the
destination network number of the packet is not equal to its internally stored local network
number).

On an extended network, until a router is heard from, the local network number range should be
set to O-$FFFE. In this way, all packets will be delivered on the local network until a router becomes
available.

Using RTMP, IRs maintain routing tables (discussed in detail in Chapter 5, "Routing Table
Maintenance Protocol"). For each network number in the internet, the routing tables indicate the
node ID (on the appropriate local network) of the next router on the proper route.

Nodes that are not IRs (nonrouter nodes) are not required to maintain routing tables. Such
nodes need maintain only the following two pieces of information:

4-18 C H A P T E R 4 Datagram Delivery Protocol

• the network number {THIS-NE1} or network number range (THIS-NET -RANGE) of the local
network

• the 16-bit network number and 8-bit node ID of any router (A-ROUTER) on the local network

This infonnation can be obtained by implementing a simple subset of RTMP, called the R.TMP
Stub, in each nonrouter node. For nodes on systems consisting of a single network and no router,
the values of THIS-NET and A-ROUTER will be 0 (unknown). On extended networks the value of
THIS-NET-RANGE will be O-$FFFE.

The following Pascal-like description specifies the internal routing algorithm used by the DDP
implementation module of a nonrouter node on a non-extended network. The sending client issues
a call to send a datagram, specifying the destination's internet socket address.

IF (destination network number = 0) OR (destination network number = THIS-NET) THEN
BEGIN

END
ELSE

BEGIN

END;

build the DDP header (it may be the short form);
call the data link to send the datagram to the destination node

build the extended DDP header;
IF THIS-NET = 0 THEN call the data link to send the packet to the destination

node
ELSE IF A-ROUTER <> 0 THEN call the data link to send the packet to A-ROUTER
ELSE return an error (no router available)

The following is the equivalent algorithm used by the DDP implementation module on a nonrouter
node on an extended network. This algorithm is simplified by the fact that if there is no router,
1HIS-NET-RANGE will always be the full internet range, $0-$FFFE.

IF (dest net no. g 0) OR (dest net no. within THIS-NET-RANGE) OR
(dest net no. between $FFOO and $FFFE)

THEN

ELSE

BEGIN
build the extended DDP header;
call the data link to send the datagram to the dest node

END

BEGIN
build the extended DDP header;
call the data link to send the datagram to A-ROUTER

END;

DDP routing algorithm 4-19

For packets received by nonrouter nodes, the routing function simply delivers the datagram to the
destination socket in the node. DDP must first verify that the destination network number (in an
extended DDP header) is equivalent to that node's internally stored value of its network number.
Otherwise, the packet is ignored. (For a precise definition of this equivalence, see "Network Number
Equivalence" later in this chapter.) It is also advisable for such nodes to verify that the destination
node ID in an extended DDP header matches the node's identifier (or is equal to the broadcast
address, 255 ($FF)).

In IRs, the routing algorithm is somewhat more complex (see Chapter 5, "Routing Table
Maintenance Protocol").

Optional "best router" forwarding algorithm

The routing algorithm given earlier, combined with the operation of the internet routers, is
sufficient to deliver a packet to its destination socket. However this algorithm may result in an
extra hop in getting to that destination. This will be the case if the initial router chosen by DDP is
not on the shortest path to the destination network (remember DDP picked any router to send the
packet to for forwarding). This section details an optional "best router" implementation for
eliminating this extra hop under most conditions. "Best router" is highly recommended on extended
networks, which often consist of many network segments interconnected by bridges.

When a packet comes in to DDP whose source network number is not within THIS-NET
RANGE (or the startup range), DDP looks at the sender's data-link address. This is the address of
the last router on the route from the network the source node was on. Sending packets to this
router to get to that network should be the best route in terms of hops. DDP maintains a cache of
recently heard from network numbers and the data-link addresses of the "best" router for each of
those networks.

When DDP determines that a packet needs to be sent to a router, it examines the "best router"
cache to determine if it has an entry for the packet's destination network. If so, DDP calls the
underlying data link to send the packet to the data-link address maintained in that cache. Otherwise it
calls the data link to send the packet to the Apple Talk address indicated by A-ROUTER- a response
will probably come back and an entry will then be made in the cache.

It is recommended that the "best router" cache be aged every 40 seconds or so, so that if a
router goes down, an alternate route will be adopted in an expedient manner and network
connections will not break. Aging in this case means that if no packets are received with a particular
source network number for this period of time, the entry for that network should be removed
from the cache.

4-20 CHAP T E R 4 Datagram Delivery Protocol

Sockets and use of name binding
Developers of products for AppleTalk should not use SASs except for purely experimental purposes.
This restriction is imposed in order to avoid the conflicting use of the same SAS by different
developers. Such conflicts are difficult to avoid in the absence of a central administering body.

Instead, developers should use the name-binding technique to allow workstations to discover
their server/service socket addresses. As a result, developers must identify their server/service by a
unique name. Workstations would then use NBP to bind an address to this name (for details, see
Chapter 7, "Name Binding Protocol"). Once the client process has determined the proper destination
socket address, it can then proceed to transmit packets to that socket.

This technique requires that developers implement NBP in their servers. While not significant
for larger servers, implementation of NBP could pose a problem for smaller, memory-bound devices.
Thus, NBP has been designed so that only a subset is required for such memory-bound servers. The
NBP subset simply responds to lookup packets received over the network. Since the names table of
such a server will contain only a single name, the NBP subset need not implement functions such as
names table management.

Network number equivalence
The use of network number 0 to indicate unknown introduces some complexity for DDP clients.
A DDP client may want to compare two network numbers to determine if they are equivalent. For
example, if a request is sent to a node on network 7 and a response is received from a node on
network 0, a question arises as to whether the response received was from the same network to
which the request was sent. Therefore, it must be clearly defined when two network numbers
match (in other words, when they are equivalent). The rule to use is "zero matches anything." As a
result, network A is equivalent to network B if A=B or A=O or B=O. All DDP clients must use this
definition of network equivalence.

Network number equivalence 4-21

Chapter 5 Routing Table Maintenance Protocol

CONTENTS

Internet routers I 5·4
Local routers I 5-4
Half routers I 5-4
Backbone routers I 5-4

Router model I 5-6

Internet topologies I 5· 7

Routing tables I 5·8

Routing table maintenance I 5·10
Reducing RTMP packet size I 5·11
Aging of routing table entries I 5·12
Validity and send-RTMP timers I 5·13

RTMP Data packet format I 5·13
Sender's network number I 5·15
Sender's node ID I 5-15
Version number indicator I 5·15
Routing tuples I 5-16

Assignment of network number ranges I 5-16

RTMP and nonrouter nodes I 5·17
Nodes on nonextended networks I 5·17
Nodes on extended networks I 5·19

RTMP Route Data Requests I 5·20

5·1

RTMP table initialization and maintenance algorithms I 5·21
Initialization I 5-21
Maintenance I 5-21

RTMP Data packet received through port P I 5-22
RTMP Request packet received through port P I 5·23
Validity timer expires I 5-23
Send-RTMP packet timer expires I 5-24

Tuple matching definitions I 5-25

RTMP routing algorithm I 5·25

•

5·2 CHAPTER 5 Routing Table Maintenance Protocol

THE ROUTING TABLE MAINTENANCE PROTOCOL

(RTMP) is used by internet routers (IRs) to establish and maintain the

routing tables that are central to the process of forwarding datagrams

from any source socket to any destination socket on an internet. Chapter 4,

"Datagram Delivery Protocol," introduced the concept of IRs as the devices

by which datagrams are forwarded/routed from any source socket to any

destination socket on the internet.

This chapter describes RTMP and includes information about

• routers and routing tables

• RTMP packets

• RTMP algorithms •

Routing Table Maintenance Protocol 5·3

Internet routers
IRs are the key components in extending the datagram delivery mechanism to an internet setting.
Figure 5-1 shows three basic ways that routers can be used to build an internet. Note that a single
router can incorporate all three configurations.

Local routers

A router used to interconnect AppleTalk networks in close proximity is referred to as a local
router and is shown in Configuration A of Figure 5-1. Local routers are connected directly to each
of the AppleTalk networks they serve. Local routers are useful in allowing the construction of an
AppleTalk internet with a large number of nodes within the same building.

Half routers

Configuration B of Figure 5-1 shows the use of two routers interconnected by a long-distance
communication link. Each router is directly connected to an AppleTalk network. The combination
of the two routers and the intervening link serves as a routing unit between the AppleTalk
networks. Each router in this unit is referred to as a half router. The primary use of half routers is
to interconnect remote AppleTalk systems. The intervening link can be made up of several devices
(such as modems) and other networks (such as public data networks). Note that the throughput of
half routers is generally lower than that of local routers, due to the generally slower communication
link. Also, these communication links are often less reliable than the local networks of the internet.

Backbone routers

Backbone routers are used to interconnect several AppleTalk networks through a backbone
network (a non-AppleTalk network). Although these routers might be placed in the local or half
router category, they present an important set of properties. Each router could be a local router
connected on one side to an AppleTalk network and on the other side to the backbone network.
Backbone routers are shown in Configuration C of Figure 5-1. Another way of connecting a
backbone router to the backbone network might be through a long-distance communication link.
Typically, the backbone network either has a much higher capacity than the networks it helps
interconnect or is a wide-area network such as a public packet-switched datagram network.

5-4 C H A PTE R 5 Routing Table Maintenance Protocol

• Figure S·l Router configurations

Configuration A

Configuration B

Configuration C

Backbone
router

Backbone
router

~~~ ~~======···==~======~======-----~~ 

................... ~P---------~------··· 
Backbone 
nerwork 

Internet routers 5·5 



Router model 
Figure 5-2 models a router as a device with several hardware ports, referred to as router ports. A 
router can be connected in any of the three ways previously described (local router to an AppleTalk 
network, half router to a communication link, or backbone router to a backbone network) or as a 
combination of all three. In this model, a router can have any number of ports, starting with 
number 1. 

Each router port has associated with it a port descriptor. A port descriptor consists of the 
following four fields: 

• a flag indicating whether the port is connected to an AppleTalk network 

• the port number 

• the port node address (the router's network number and node ID corresponding to the port) 

• the port network number range (the network number range for the network to which the port 
is connected) 

• Figure 5-2 Router model 

Router 

~ .--------- ... 

RT.\IP 
____ ~ _ ~ Routing ~ __ .. _ ZIP 

• tahle : 
' ----- ... ----· 

' ' 

1 ' l ' ' 
' 

IDII' Zonl' 1nfonn:1t10n 
sorket '><Xkct CZI~) 

DDI' Naml-s 
NBI' inftmn:tlion 

routing process sorkct (:-J ISJ routing process 

§ § § • • • § k k k . 

Port Port Port Port 
I 2 3 II 

5-6 CHAP T E R 5 Routing Table Maintenance Protocol 



The values of these four fields are self-evident for a port that is directly connected to an AppleTalk 
network. When a port is connected to one end of a communication link (half router case), the port 
node address and port network number range are meaningless. When a port is connected to a non
AppleTalk backbone network, the port network number range is meaningless, and the port node 
address becomes the appropriate address of the router on the backbone network. In this latter case, 
a provision must be made in the design of the port description for this field to be of any size 
(possibly variable length) depending on the nature of the backbone network. 

+ Note: The AppleTalk node address of a local router is different for each of the router's ports. 
In other words, for each AppleTalk network to which the local router is directly connected, 
the router acquires a different network number and node ID. 

The router internals include an associated data-link process for each port, a Datagram Delivery 
Protocol (DDP) routing process, the routing table, and the RTMP process implemented on a 
statically assigned socket (SAS) known as the RTMP socket (socket number equal to 1). The IR 
accepts incoming datagrams from the data links and then reroutes them through the appropriate 
port depending on their destination network number. (The IR makes the routing decision by 
consulting the routing table.) The RTMP process receives RTMP packets from mher routers 
through the RTMP socket and uses these packets to maintain/update the routing table. 

Routers additionally include a Name Binding Protocol (NBP) routing process and a Zone 
Information Protocol (ZIP) process; the roles of these protocols are discussed in Chapters 7 and 8. 

Internet topologies 

RTMP allows internets to consist of AppleTalk networks interconnected through routers in any 
arbitrary topology. A limitation imposed on an AppleTalk inten:tet is that for each router no two of 
its ports can be on the same network. In addition, nodes on a network that is more than 16 hops 
away (by way of the shortest path) from another network will nm be able to communicate with 
nodes on the second network. 

Internet topologies 5-7 



Routing tables 

All routers maintain complete routing tables that allow them to determine how to forward a 
datagram on the basis of its destination network number. RTMP allows routers to exchange their 
routing tables periodically. In this process, a router receiving the routing table of another router 
compares and updates its own table to record the shortest path for each destination network. This 
exchange process allows the routers to respond to changes in the connectivity of the internet (for 
example, when a router goes down or when a new router is installed). 

A routing table that has stabilized to all changes consists of one entry for each network that 
can be reached in the internet. Each entry provides the number of the port through which packets 
for that network must be forwarded by the router, the node address of the next IR to which the 
packet must be sent (network number and node ID for IRs on AppleTalk networks), and the 
distance to the destination network. The entry in the routing table corresponds to the shortest 
path known to that router for the corresponding destination network. 

The distance to a network is measured in terms of hops, with each hop representing one IR 
that the packet traverses in its path from the current router to the destination network. This 
simple measure of distance is adequate for an RTMP that adapts to changes in the connectivity of 
the network. The distance corresponding to a network to which the router is directly connected is 
always 0. 

+ Note: Other distance measures could reflect the speeds/capacities of the intervening links 
and therefore try to fmd the minimum time path. Another method might use current 
traffic conditions on a particular path to modify the path's contribution to distance. The 
hop-count measure is selected here for its simplicity. The basic algorithm remains unchanged 
when more complex measures are used. 

Each routing table entry has an entry state associated with it. An entry state can take on one 
of three values: good, suspect, or bad. The significance of the entry state is explained in "Routing 
Table Maintenance" later in this chapter. 

Figure 5-3 shows a typical routing table for a router with three ports in an internet consisting 
of seven networks. The figure also shows the corresponding port descriptors. 

5·8 C H A P T E R 5 Routing Table Maintenance Protocol 



• Figure 5-3 Example of a routing table 

loc.!l area nclwork 
number 3 

Local are-J nel\\'Ork 
number 106 

Backbone I 131 
nc1work 

l'on 3 

:\c1work 
r.lllge 

:1 

1-t 

2_l-2'i 

n 

106 

129 

2:11 

. 
• 

Di,lanre 

j 

0 

753 

:\cxl 
Pon lR 

() 

3 11 .~1 

:1 11.~1 

3 75:1 

0 

:1 1131 

0 

Emry 
>l:lle 

Good 

GtKKl 

GIKKI 

G!KXI 

GrKx l 

Good 

Good 

Local an."J nc1work 
number 27 

Local area nelwork 
number 23·25 



Routing table maintenance 

Routers have no record of the topology or connectivity of the internet. Consequently, RTMP must 
provide the mechanism for constructing routing tables and for maintaining these tables in the face 
of routers appearing or disappearing in the internet. 

When a router is switched on, it initializes its table by examining the port descriptor of each of 
its ports. Any AppleTalk port with a nonzero network number range signals that the router is 
directly connected to that network. In this case, an entry is created in the table for that network 
number range, with a distance of 0 and with the number of the port. This initial table is called the 
routing seed of the router. 

Every router must periodically broadcast one or more RTMP Data packets through each of its 
ports. The RTMP Data packets are addressed as datagrams to the RTMP socket. Therefore, every 
router periodically receives RTMP Data packets from all other routers on its directly connected 
networks, backbones, or communication links. The RTMP Data packets carry the node address of 
the router port through which the RTMP Data packet was sent, as well as the <network range, 
distance> pairs (called routing tuples) of the entries in the routing table of the sending router. 
Using these RTMP Data packets, the receiving node's RTMP adds to or modifies its own routing 
table. 

The basic idea is that if an RTMP Data packet received by a router contains a routing tuple for a 
network not in the router's table, then an entry is added for that network number with a distance 
equal to the tuple's distance plus 1. In effect, the RTMP Data packet indicates that a route exists to 
that network through the packet's sender. 

Similarly, if an RTMP Data packet indicates a shorter path to a particular network than the one 
currently in the router's routing table (if the packet's tuple distance plus 1 is Jess than the table 
entry's current distance), then the corresponding entry must be modified to indicate that the 
RTMP packet's sender is the next IR for that network. Even if the paths are of equal length, the 
entry is modified and routing information remains as up to date as possible. This process allows for 
the growth and adaptation of routing tables due to the addition of new routes and routers. 

5-10 CHAPTER 5 Routing Table Maintenance Protocol 



Reducing RTMP packet size 

The periodic broadcasting of the routing table on each of a router's directly connected data links is 
fundamental to the routing table maintenance process. Although this broadcasting ensures 
consistency of the internet's routing tables, it poses some practical problems. In the case of slow 
data links, such as those used between half routers, the traffic generated by this process can 
consume a major portion of the available channel bandwidth. This problem is also observed on 
networks, such as backbones, to which a large number of routers are connected. The overhead is 
even more notable when the internet has a large number of networks and hence large routing 
tables. 

To address these problems, a technique known as split horizon is used by RTMP to significantly 
reduce the size of RTMP Data packets broadcasted by routers. Referring to Figure 5-4, it can be seen 
that it is never useful for a router B to tell router A that it can get to network n when the path used 
by B would be to go through A itself (A would just ignore this tuple anyway). Likewise, it is not 
useful forB to give any other neighbor routers (C,D) this information either. Thus, especially on a 
backbone, most of the routing table need not be sent at all. 

To implement split horizon, routers do not send the entire routing table out each of their ports. 
Instead, the routers only send those routing tuples that may be used by routers on the network 
connected to that port. Specifically, all entries whose forwarding port in the routing table is equal 
to the port out which the entry is being sent are omitted from the RTMP Data packet. 

In addition to split horizon, a more economical extension to RTMP could be designed to 
communicate just the changes to a routing table. Such changes to RTMP have not yet been 
formulated by Apple Computer. 

• Figure S-4 Split horizon example 

Router B Router D 

···------------~~----------------------~--------------~------··· Backbone network 
Router A 

Network n 

Routing table maintenance S-11 



Aging of routing table entries 

If routers go down or are switched off, the corresponding changes in status will not be discovered 
through the previously mentioned process. To respond to such changes, the entries in the routing 
tables must be aged. Aging is the process by which unconfirmed routing table entries are eventually 
removed from the routing table. In the absence of confirmation through reception of RTMP Data 
packets, entries are declared suspect and, later, bad. Bad entries are eventually purged from the 
routing tables. 

Each entry in the routing table corresponding to a network to which the router is not directly 
connected is the result of an RTMP Data packet that was received by the router from the next IR 
for that network. RTMP considers such an entry to be valid for a limited time only, called the entry 
validity time. Before starting the validity timer, the router goes through its routing table and 
changes the state of every good entry to suspect. An entry must be revalidated from a new RTMP 
Data packet before the timer expires. 

If the next IR for a particular entry in a router's routing table goes down, that IR will not send 
RTMP Data packets. The validity timer will expire, and the router will not have received 
confirmation of the entry. At that time, the entry's state is changed from suspect to bad. Any 
other RTMP Data packet received with path information to the network of the entry can be used 
to replace the entry with the new values from that packet. If no new route is discovered, however, 
the bad entry will be deleted when the validity timer expires twice more. 

This aging process would be sufficient to eventually remove information about a network that 
can no longer be reached from the routing tables of all routers. The routers that were closest to 
that network would age the entry out of their routing tables, then routers next to those routers 
would age the entry, and so on. However to speed up this process (and aid in the more speedy 
adoption of alternate routes), a technique referred to as notify neighbor is used by RTMP. The 
notify neighbor technique is a method of identifying entries whose state is bad when sending 
RTMP Data packets. Bad entries are identified in RTMP Data packets by a tuple distance of 31. 
Routers receiving such a tuple can automatically set the state for that entry to bad and then notify 
neighboring routers using the same technique the next time they send out RTMP data packets. A 
tuple identifying a bad entry should only be processed by the receiving router if the router sending 
the tuple was the one set as the next IR for the network in the tuple (otherwise there is an 
alternate route to that network). In addition, tuples identifying bad entries should not be sent if 
they would normally be eliminated by split horizon processing. 

5-12 CHAPTER 5 Routing Table Maintenance Protocol 



Routing table entries whose state is bad are eliminated from the routing table following two 
further expirations of the validity timer. Until that time, notify neighbor tuples should be sent in 
RTMP Data packets for those entries. 

For a detailed specification of the aging process, see "RTMP Table Initialization and 
Maintenance Algorithms" later in this chapter. 

Validity and send-RTMP timers 

Each router has a timer known as the send-RTMP timer. Every time this timer expires, the router 
broadcasts, through each of its ports, its routing table in the form of RTMP Data packets. 

The values for the validity and send-RTMP timers have a significant effect on both the 
network traffic and on the propagation of routing table adaptations to changes in the internet's 
connectivity. The exact values of these parameters have been determined through experimentation 
with actual internets. These values are 10 seconds for the send-RTMP timer and 20 seconds for the 
validity timer. 

RTMP Data packet format 

RTMP uses four kinds of packets: RTMP Data, Request, Route Data Request, and Response packets. 
The routing table maintenance process, discussed in the foregoing, makes use of RTMP Data 
packets. RTMP Request and Response packets are discussed in "RTMP and Nonrouter Nodes" and 
"Route Data Requests" later in this chapter. 

The format of an RTMP Data packet is shown in Figure 5-5. The DDP type field is set to 1 to 
indicate that the datagram is an RTMP Data packet. The DDP data part of the packet consists of 
four parts: the sender's network number, the sender's node ID, a version number indicator, and the 
routing tuples. 

RTMP Data packet format 5-13 



• Figure 5·5 RTMP Data packet formats 

O:ua-link 
header 

DDP header 

RTMP packet 
(noncxtcndcd network) 

I I h)1c.'(8hit~) I 

{ ! 
{ :1-1 ----1 

• • • 

I 
• • • 

- Router\ nct\\·ork -
numlll.'r 

II) length = H 

Router'> node II) 

- () -

SH2 

• • • FiN tuple • • • 

I 
• • • • • • 

RTMP packet 
(extended network) ,-1 hyte(8bits) ~ 

I 
• • • • • • 

I I 
• • • • • • 

r- Router\ nell'. ork -
munlll.'r 

ID icnwh = H 

Router\ mxk ID 

.. hr..ttupk • 
(network r:m~te and : 

1---'-·e-·r..-i<_m_m_u_nl_x:_' r_> ---II\ 
Second tuple 

. \ 

• • 
\ 

\ 

I 
• • • 

5-14 CHAP T E R 5 Routing Table Maintenance Protocol 

\ 

Nonextcndcd 
network tuple 

~ Network munbcr -

Range -1-h+-.--~-------l 
nag o I I 

Extended network ruplc 

- Range >tan -

Range 
nag 

-., 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

II I Oi>~ :mcc 

- H:mge end -

1!2 



Sender's network number 

The first 2 bytes of the RTMP Data packet's DDP data is the router's network number part of the 
node address of the port through which the packet is sent by the router. On a nonextended 
network, this field allows the receiver of the packet to determine the network number of the 
network through which the packer was received. (This is the network to which the corresponding 
port of the receiver is attached.) RTMP Data packets sent out through ports that are not on 
Apple Talk networks (for example, over serial lines or a backbone network) should have this field set 
ro 0. 

Sender's node ID 

The bytes following the sender's network number indicate the node ID of the sender (for the port 
through which the packet was sent). To allow for ports connected to networks other than 
Apple Talk networks, this field must be of variable size. The first byte of the field contains the 
length (in bits) of the sender node's address, with the address itself in subsequent bytes. If the 
length of the node address in bits is not an exact multiple of 8, the address is prefiXed with enough 
Os to make a complete number of bytes. The bytes of this modified address are then packed into 
the sender's ID field of the packet, starting with the most-significant bits. It is from this field that 
the receiver of the packet determines the ID of the router sending the packet.) On an Apple Talk 
network this ID is combined with the sender's network number to specify the sender's complete 
node address. 

Version number indicator 

Following the sender's node ID, in RTMP Data packets sent on non-extended networks, is a three 
byte field indicating the version number of the RTMP Data packet. The value of this field is 
currently $000082. The version number of an RTMP Data packer sent on an extended network is 
specified in the fi rst tuple, as detailed in the next section. 

RTMP Data packet format 5-15 



Routing tuples 

The last part of the RTMP Data packet consists of the routing tuples from the sending router's 
routing table. 

There are two types of routing tuples. For tuples specifying information about nonextended 
networks, tuples are of the form <network number, distance>. The network number is two bytes 
and the distance is one byte. For tuples specifying information about extended networks, tuples are 
of the form <network number range start, distance, network number range end, unused byte>. 
This form is used even for extended networks with ranges of one (for example, 3-3). The network 
number range start and end are two bytes each. An extended tuple is differentiated from a 
nonextended tuple by having the high bit of its distance field set. The unused byte in extended 
tuples is set to the value $82. 

The first tuple in RTMP Data packets sent on extended networks serves three purposes. First, 
this tuple indicates the network number range assigned to that network. Second, the tuple's sixth 
byte, set to $82, indicates the version of RTMP being used. Third, the tuple serves as the first tuple 
in the packet. It may, however, also be repeated later in the packet. 

For intemets with a large number of networks, the entire routing table may not fit in a single 
datagram. In that case, the tuples are distributed over as many RTMP Data packets as necessary. 
Tuples are never split across packets. In any event, every time the send-RTMP timer expires, these 
multiple RTMP Data packets must be transmitted through each router port. 

Assignment of network number ranges 

Network number ranges are set into the port descriptors of the router ports and are then 
transmitted through RTMP to the other nodes of each network. 

Not all routers on a particular network must have the network number range set into their 
corresponding port descriptors. At least one router (called the seed router) on a network must 
have the network number range built into its port descriptor. The other routers could have a port 
network number range of 0; they will acquire the correct network number range by receiving RTMP 
Data packets sent out by the seed router. 

It is a requirement that the routers on a particular network not have in their port descriptors 
conflicting port network number ranges for that network. The value 0 does not cause a conflict, 
but otherwise, all seed routers must have the same value for both the start and end of the network 
number range. 

5-16 C HAP T E R 5 Routing Table Maintenance Protocol 



If a router is not a seed router for a particular port and has not yet discovered the network 
number range associated with that port, it should not send its routing table through that port. In 
addition, it should not have an entry in its routing table for that particular port until it acquires the 
port's network number range. However, any IR that is not a seed router must operate with regard 
to those ports whose network number ranges it does know. 

RTMP and nonrouter nodes 
Nonrouter nodes do not need to maintain routing tables. As noted in Chapter 4, "Datagram Delivery 
Protocol," these nodes require only the network number range of the network to which they are 
connected (TIUS-NET or THIS-NET-RANGE) and the network number and node ID of any router 
on that network (A-ROUTER). Details of the discovery and maintenance of this information 
depend upon whether the node resides on an extended or nonextended network. 

Nodes on nonextended networks 

When a node is initialized on a nonextended network, the values of both THIS-NET and A-ROUTER 
are 0 (unknown). The node can discover the correct values of these two quantities in one of two 
ways. 

The first method is to listen for RTMP Data packets that are being sent out by the routers on 
the network for the purpose of maintaining their routing tables. Any node relying on this passive 
listening approach should be sure to wait long enough to receive an RTMP Data packet. 

A second, more active approach relies on the use of RTMP Request and Response packets, as 
shown in Figure 5-6. The node makes a request for the network number and any router's node ID 
by broadcasting an RTMP Request packet. This packet is a datagram with DDP type equal to 5; it 
can be sent by the node through any socket. The datagram is addressed to destination socket 
number 1 (the RTMP listening socket). When an RTMP Request packet is received by a router's 
RTMP process, this process responds by sending an RTMP Response packet to the source socket of 
the Request packet. This Response packet is identical to a normal RTMP Data packet except that it 
contains no routing tuples and it is sent as a directed (not a broadcast) packet to the requesting 
node. The requesting node thus acquires the values of THIS-NET and A-ROUTER from the sender's 
network number and sender's node ID fields of the Response packet. 

RTMP and nonrouter nodes 5-17 



• Figure 5·6 RTMP Request and Response packet fonnats 

RTMP Request RTMP Response RTPM Route Data Request 
(RDR) 

~-1 b}1C (8 bit>) -J ~-I hj1C (H hits) -J ~-1 h)1c (8 bitsl -j 

• • "'""""' { : : : 
h~d" i i .f----1 ---1 

• 

I 
DDP 

he:tdcr 

• • • 

DDP type; 5 

RDIP function ~ I 

• • • 

:\ode ID of the 
router M"mling out 

the RT,\IP parkct 

• • • 

1-

• • • 

t-

I-

DDP type • I 

Sender'> 
network 
numl><:r 

ID kngth 

Sender's node II) 

:\ctwork 
range >tart 

sso 

:\ctwork 
mngc end 

S82 

• • • 

-

• • • 

-

-

• • • 

I 
• • • 

ODP type~ 5 

RniP function u 2 or 3 

On extended 
networks only 

In either approach, nonrouter nodes implement a simple RTMP process, known as the RTMP 
Stub. This process sits on the RTMP listening socket in that node and, upon receiving an RTMP 
Data or Response packet, copies the sender's network number and sender's node ID fields into 
THIS-NET and A-ROUTER. Therefore, THIS-NET and A-ROUTER are set every time an RTMP Data 

5-18 CHAPTER 5 Routing Table Maintenance Protocol 

• • • 

I 
• • • 



or Response packet is received. While THIS-NET will stabilize to a constant value, A-ROUTER may 
change continually (if there is more than one router on the network). 

Additionally, nonrouter nodes must maintain a background timer for the purpose of aging the 
value of A-ROUTER. The purpose of this background timer is to handle the case in which all the 
routers connected to a specific network go down and the network becomes isolated. The value of 
this timer should be approximately 50 seconds. Each time an RTMP Data packet is received, the 
timer is reset. If the timer expires, A-ROUTER should be aged, meaning that A-ROUTER should be 
reset to 0. THIS-NET, however, should not be reset. 

+ Note: The RTMP Stub should differentiate between RTMP Data or Response packets (sent 
by routers) and RTMP Requests (broadcast by nonrouter nodes). The RTMP Stub should 
ignore RTMP Requests. RTMP Requests can be differentiated from RTMP Data or Response 
packets because RTMP Requests have a DDP type of 5, whereas RTMP Data and Response 
packets have a DDP type of 1. 

Nodes on extended networks 

When a node is initialized on an extended network, THIS-NET-RANGE is set to O-$FFFE and the 
network number and node ID of A-ROUTER are both set to 0. The node discovers the correct 
values of these two quantities and its zone name during the startup process through a ZIP 
GetNetinfo request, described in Chapter 8, "Zone Information Protocol." 

Nodes on extended networks must also implement an RTMP Stub. If A-ROUTER is zero (either 
due to never being set or due to being aged), the first RTMP Data packet coming in to the RTMP 
Stub will indicate the presence of the first router. At this time the node can verify that its network 
number is within the range indicated by the router for the network (by examining the first tuple in 
the RTMP Data packet) and complete the parts of the startup process it could not complete at 
startup, setting THIS-NET-RANGE and A-ROUTER from the packet. 

Once the node has acquired a value for THIS-NET-RANGE and A-ROUTER, the RTMP process, 
upon receiving an RTMP Data packet, first verifies that the range specified for the sender's network 
(in the first tuple) precisely matches the node's value of THIS-NET-RANGE. If the ranges do not 
match, the packet is rejected and the router aging timer not reset. Otherwise, the sender's network 
number and node ID are copied into A-ROUTER and the aging timer reset. 

RTMP and nonrouter nodes 5-19 



If the aging timer expires: A-ROUTER is set to 0, THIS-NET-RANGE is set to O-$FFFE, and the 
zone name is aged. The RTMP stub reverts to its initial state. 

+ Note: Nodes on extended networks do not generally make RTMP Requests during the 
startup process. Routers on extended networks must still respond to these requests. RTMP 
Responses on extended networks should include the first routing tuple, which specifies the 
network number range. 

RTMP Route Data Requests 

RTMP Data packets are generally broadcast once every 10 seconds. A node wishing to receive, in a 
directed manner, an RTMP Data packet can use an RTMP Route Data Request (RDR) packet to obtain 
this information. This packet has the same format as an RTMP Request packet, except it has a 
function code of either 2 or 3 (see Figure 5-6). A function code of 2 indicates that the router should 
perform split horizon processing before returning the response; a function code of 3 indicates that 
the router should not perform split horizon processing (should return the whole table). 

A router receiving an RDR packet should send the requested information, in as many RTMP 
Data packets as required, back to the source internet socket address of the RDR packet. RDRs can 
be used by a node wishing to have routing information sent to it on a socket other than socket 1 or 
to obtain routing information from a router that is not on a network to which the node is directly 
connected. 

5-20 CHAP T E R 5 Routing Table Maintenance Protocol 



RTMP table initialization and maintenance algorithms 
The following algorithms provide a detailed specification of the initialization and maintenance 
process of an active router. 

Initialization 

When switched on, a router perfonns the following table initialization algorithm: 

FOR each port P connected t o an AppleTalk network 
IF the port network number range <> 0 
THEN create a routing table entry for that network number range with 

Entry ' s network number range : • port network numbe r range; 
Entry's distance := 0; 
Entry's next IR := 0; 
Entry's state := Good; 
Entry's port := P; 

This algorithm creates a routing table entry for each directly connected AppleTalk network for 
which the router is a seed router. 

Additionally, for each port with a nonzero network number range, the router should attempt 
to verify that the port's network number range does not conflict with that from another router on 
the same network. This can be done, for instance, by broadcasting an RTMP Request or ZIP 
GetNetlnfo packet. If a conflict is discovered, the routing seed information should not be used. 

Maintenance 

The router is assumed to have two timers running continuously: the validity timer and the send
RTMP timer. The router's RTMP process responds to the following events: 

• the receipt of an RTMP Data packet 

• the receipt of an RTMP Request or RTMP Route Data Request packet 

• the expiration of the validity timer 

• the expiration of the send-RTMP timer 

The following algorithms correspond to these events. 

RTMP table initialization and maintenance algorithms 5-21 



RTMP Data packet received through port P 
IF P is connected to an AppleTalk network AND P's network number range 0 
THEN BEGIN 

P's network number range :=packet's sender network number range; 
IF there is an entry for this network number range 
THEN delete it; 
Create a new entry for this network number range with 

Entry's network number range :o packet's sender network number range; 
Entry's distance := 0; 
Entry's next IR := 0; 
Entry's state := Good; 
Entry's port := P; 

END; 

FOR each routing tuple in the RTMP Data packet DO 
IF there is a table entry corresponding* to the tuple's network number range 

THEN Update-the-Entry 
ELSE IF there is a table entry overlapping* with the tuple's network number range 

THEN ignore the tuple 
ELSE Create-New-Entry; 

* See the section, "Tuple Matching Definitions," for definitions of corresponding and overlapping. 

The following three general-purpose routines (Update-the-Entry, Create-New-Entry, and Replace
Entry) are used by this algorithm. 

Update-the-Entry 
IF (Entry's state Bad) AND (tuple distance < 15) 
THEN Replace-Entry 
ELSE 

IF Entry's distance >= (tuple distance + 1) AND (tuple distance < 15) 
THEN Replace-Entry 
ELSE IF Entry's next IR = RTMP Data packet's sender node address 

AND Entry's port = P 
If entry says we're forwarding to the IR who sent us this 
packet, the net's now further away than we thought } 

THEN IF tuple distance <> 31 THEN BEGIN 
Entry's distance := tuple distance + 1; 
IF Entry's distance < 16 
THEN Entry's state := Good 
ELSE Delete the entry 

END 
ELSE Entry's state :~ Bad; 

5-22 C H A P T E R 5 Routing Table Maintenance Protocol 



Create-New-Entry 

Entry's network number range := tuple's network number range; 
Replace-Entry; 
IF tuple's distance = 31 THEN Entry's state :=Bad; 

Replace-Entry 

Entry's distance := tuple's distance + 1; 
Entry's next IR := RTMP Data packet's node address 

Entry's port number := P; 
Entry's state :=Good; 

RTMP Request packet received through port P 

network number and node ID 
on an AppleTalk network } 

IF P is connected to an AppleTalk network and P's network number range <> 0 
THEN BEGIN { Prepare an RTMP Response packet } 

Response packet's sender network number := P's port network number; 
Response packet's sender node ID := P's port node ID; 
IF P is connected to an extended network 

THEN Response Packet's first tuple := P's network number range 
Call DDP to send the Response packet through port P to the 

Request's source; 
END; 

Validity timer expires 
FOR each entry in the routing table DO 

CASE Entry's state OF 
Good: IF entry's distance <> 0 

THEN Entry's state := Suspect; 
Suspect: Entry's state := Bado; 
Bado: Entry's state:= Bad1; 
Bad1: Delete the entry 

END; 

RTMP table initialization and maintenance algorithms S-23 



Send-RTMP packet timer expires 

IF routing table is not empty 
THEN FOR each router port P DO 

IF the port is connected to an AppleTalk network AND its network number 
range is nonzero 

THEN BEGIN 
Copy-in-tuples; 
Packet's sender network number :; port network number; 
Packet's sender node ID :=port node ID; 
Call DDP to broadcast the packet to the RTMP socket; 

END 

ELSE IF the port is not connected to an AppleTalk network 
THEN BEGIN 

Copy-in-tuples; 
Packet's sender network number :; 0; 
Packet's sender node ID := port node ID; 
Call DDP to broadcast the packet through the port's data link 

to the RTMP socket; 
END; 

Copy-in-tuples 

For each entry in the routing table 
IF the entry's port <> P {split horizon} 

THEN IF the entry's state <>Bad 
THEN copy the entry's network number range and distance 

pair into the tuple (as long as the distance is <15) 
ELSE copy the entry's network number range and distance 

of 31 into the tuple {Notify Neighbor} 

S-24 C H A P T E R 5 Routing Table Maintenance Protocol 



Tuple matching deftnitions 

For purposes of routing table maintenence, it is important to define when an incoming RTMP tuple 
corresponds to and overlaps with an entry in the routing table. An incoming tuple corresponds to 
an entry in the routing table if the range start and range end of that tuple are the same as the range 
start and range end of the routing table entry. When comparing ranges where one of the ranges is 
for a nonextended network (in other words, indicated by just a single network number, like 3), that 
range should be considered a range of one (that is 3-3). 

An incoming tuple overlaps with an entry in the routing table if any network number in either 
range is in both ranges. A correctly maintained routing table will contain no overlapping entries. 

RTMP routing algorithm 

The routing algorithm used by the DDP router in an internet router to forward internet datagrarns 
is shown in Figure 5-7. This algorithm applies only to the forwarding of packets received by the 
router through one of its ports and does not hold for packets generated within the router. The 
algorithm assumes that when a packet is received through one of the router ports, it is tagged with 
the number of the port and placed in a queue. The IR removes packets from this queue and then 
executes the algorithm of Figure 5-7. Remember when comparing network numbers that a 
destination network number of 0 will always match whatever it is being compared to. 

RTMP routing algorithm 5-25 



• Figure S· 7 Datagram routing algorithm for a router 

~ 
110 Reception poll " nonextended J'e5 

and packet's data-link type = 1? 
(sholl DDP header) 

DDP destination network= reception poll's network yes 
and -.. 

DDP destination node ID "' broadc-Jst or reception poll's node ID? 

tlO 

DDP destination network within reception poll's r-- Discard packet 
network number rJnge and I i\etwork-spccific broadcast 

DDP destination node ID .. broadcast? not for this router) 

110 

Search for routing table entry jou11d 
containing packet's DDP destination Entry's distance = 0? 

network number 

not no ~yes 
found 

DDP destination yes 

~ 
node ID"' 0? 

Packet's hop count < 15? Tno 
yes ( DDP dc~ina1Km network number yes 

and node ID .. network number -.. 

, and node ID of entry's poll 

Increment packet's hop count; ~ llO 

send to table entry's nextiR 
through routing table entry's poll OIJP dcstinalion nc'!Work • enuy's ~ 

poll network number and DDP · 
destination node ID "' broadcast? 

no 

Deliver a copy to destination 
socket in this router 

Discard the packet 
J~ 

Send to destination node through 
routing table entry's poll 

Delh·er to appropriate socket 
(Packet addressed to socket in router) 

S-26 C H A P T E R 5 Routing Table Maintenance Protocol 



Chapter 6 AppleTalk Echo Protocol 

6-1 



T H E A P P LET A L K E C H 0 P R 0 T 0 C 0 L (AEP) is implemented in 

each node as a process on a statically assigned socket (socket number 4, 

known as the Echoer socket). The Echoer listens for packets received through 

this socket. Whenever a packet is received, the Echoer examines its Datagram 

Delivery Protocol CDDP) type and the DDP data length in the packet to 

determine if the packet is an AEP packet. If it is, then a copy of the packet is 

returned to the sender. • 

6-2 CHAPTER 6 Apple Talk Echo Protocol 



Figure 6-1 shows the fonnat of an AEP packet. If the DDP type field in a packet is not equal to 4 
(the DDP type for AEP) or if the DDP data length is 0, then the Echoer discards the packet and 
ignores it. However, if the packet has a DDP type equal to 4 and the DDP data length is not 0, then 
the Echoer examines the AEP header (the first byte of the DDP data). If the first byte, known as 
the Echo function field, is equal to 1, then the packet is an Echo Request packet. In this case, the 
Echoer changes the function field to 2, which indicates that the packet is an Echo Reply packet, and 
the Echoer calls DDP to send the packet back to the sender of the Echo Request packet. 

• Figure 6-1 AEP packet format 

~~ byte (8 bits)~ 

lli•B"k ~w { ~ ! 
I I 

DDP header -

• • • • • • 

Destination socket • 4 

DDP type • 4 

'- ~-------1 
AEP header - -t- Echo function _ _ Echo Request • I 

Echo Repl)' = 2 / 1------- ... 

• AEP data - • 
• 

I 

(0 tO ;s; b)1CS) 
• • • 

I 

AppleTalk Echo Protocol 6-3 



When using AEP services, the client must first detennine the internet address of the node from 
which an echo is being sought (the client process usually uses the Name Binding Protocol (NBP) for 
this purpose). The client then calls DDP to send an Echo Request packet to the Echoer socket 
(socket number 4) in that node. The client can send the Echo Request datagram through any socket 
the client has open, and the Echo Reply will come back to this socket. The client then waits for the 
receipt of the Echo Reply packet 

+ Note: The client can set the AEP data part of the Echo Request packet to any pattern and 
then examine the data in the Echo Reply packet (which will be the data sent in the Request 
packet). The client can use the data in the Reply packet to distinguish between the replies to 
various Echo Request packets the client has sent. 

The client may fail to receive an Echo Reply under the following conditions: 

• The AEP packets are lost in the network system. 

• The target node does not have an Echoer. 

• The target node is currently unreachable or has gone down. 

The client should detennine how long to wait for the Echo Reply packet before concluding that one 
of these conditions exists. The client could retransmit the Echo Request packet several times before 
concluding that the remote node will not respond. 

AEP can be used 

• by any DDP client to determine whether a particular node, known to have an Echoer, is 
accessible over an internet 

• to obtain an estimate of the round-trip time for a typical packet to reach a particular remote 
node, usually a server (This time estimate is extremely useful in developing certain heuristic 
methods, for example those used for estimating the timeouts to be specified by clients of the 
AppleTalk Transaction Protocol (ATP), the AppleTalk Session Protocol (ASP), and other higher
level protocols.) 

6-4 C H A P T E R 6 AppleTalk Echo Protocol 



Part III Named Entities 

P A R T I I I D I S C U S S E S in detail the Name Binding Protocol (NBP) 
and the Zone Information Protocol (ZIP). 

Part I and Part II described protocols by which AppleTalk conveys 
packets from one network entity to any other entity on that network or an 
AppleTalk internet. These protocols use numerical addresses to identify a 
packet's source and destination entity. From these addresses AppleTalk 
determines the route the packet uses on its path through the internet. 

Although addresses are efficient for internal use, network users prefer 
names. Names are character strings that can more naturally convey semantic 
and contextual information to the user. Part III describes the protocols by 
which names can be converted to addresses. • 



Chapter 7 Name Binding Protocol 

CONTENTS 

Network-visible entities I 7-4 

Entity names I 7-4 

Name binding I 7-5 
Names directory and names tables I 7-f> 
Aliases and enumerators I 7-f> 
Names information socket I 7-7 

Name binding services I 7-7 
Name registration I 7-7 
Name deletion I 7-8 
Name lookup I 7-8 
Name confirmation I 7-8 

NBP on a single network I 7-9 

NBP on an internet I 7-10 
Zones I 7-10 
Name lookup on an internet I 7-10 

NBP interface I 7-11 
Registering a name I 7-12 
Removing a name I 7-12 
Looking up a name I 7-13 
Conftrming a name I 7-13 

7-1 



NBP packet formats I 7-14 
Function I 7-15 
Tuple count I 7-15 
NBP ID I 7-15 
NBP tuple I 7-15 

• 

7-2 CHAPTER 7 Name Binding Protocol 



A P P L E T A L K P R 0 T 0 C 0 L S R EL Y on numeric identifiers, such as 

node IDs, socket numbers, and network numbers, to provide the addressing 

capability essential for communication over the network. However, numbers 

are sometimes hard for users to memorize and are easily confused and 

misused. For network users, names are a more familiar form of identification. 

If an entity is referred to by name, the name must be converted into a 

network address for use by the other protocols. The Name Binding Protocol 

(NBP) performs the conversion of entity names into addresses. 

An AppleTalk network uses dynamic node address assignment; therefore, 

addresses can change from time to time and cannot be configured into 

software to gain access to network resources. Name binding provides a way 

of translating names, which change infrequently, into addresses, which 

change frequently (see "Sockets and Use of Name Binding" in Chapter 4, 

"Datagram Delivery Protocol"). 

This chapter describes NBP and includes information about 

• network-visible entities and entity names 

• name binding protocol services on a single network and on an internet • 

Name Binding Protocol 7-3 



Network-visible entities 

A network-visible entity (NVE) is any entity that is accessible over an AppleTalk network system 
through the Datagram Delivery Protocol (DDP). Thus, the socket clients on an internet are its 
NVEs. 

The nodes of the internet are not NVEs; rather, any services in the nodes available for access 
over the network system are NVEs. For example, a network print server itself is not the NVE. The 
print service will typically be a socket client on what might be called the server's request listening 
socket. The request listening socket is the server's NVE. 

The same distinction applies to the users of the network system. They themselves are not 
network-visible. But a user can have an electronic mailbox on a mail server. This mailbox is network
visible and will have a network address. Although the network does not provide any protocols for 
conversing directly with the individual user, the protocols communicate with applications and 
services to which the user can gain access. 

Entity names 

An NVE can assign itself a name, called an entity name, although not all NVEs need to have names. 
Entity names are character strings. A particular entity could, in fact, possess several names (aliases). 

An entity name is a character string consisting of three fields-object, type, and zone- in this 
order with colon (:) and at-sign(@) separators (for example, judy:Mailbox@Bandley3). Each field is a 
string of a maximum of 32 characters. 

In addition to a name, an entity can also have certain attributes. Foe example, a print server's 
request receiver might have associated with it a list of the printer's attributes such as its type 
(daisy wheel, dot matrix, laser) and the kind of paper the printer holds. These attributes are specified 
in a part of the entity name called the entity type. 

In addition to attributes, some location information about the entity can prove useful for 
users. For example, a print server might belong to a particular department or building. Users of the 
network should be able to select a print server on the basis of some appropriate information such as 
its convenient location. As a result, a zone field has been included in the entity name. 

In the entity name, certain special characters can be used in place of strings. For the object and 
type fields, an equal sign ( =) wildcard can be substituted, signifying all possible values. A single 
approximately equal sign(==) can also be used to match zero or more characters anywhere within an 
object or type string. For the zone field, an asterisk (*) can be substituted signifying the default 
value (that is, the zone in which the node specifying the name resides). 

7-4 C H A P T E R 7 Name Binding Protocol 



If a network name does not contain special characters, the name is said to be fully specified. For 
example, Mona:Mailbox@Bandley3 is fully specified. The network name =:Mailbox@* refers to all 
mailboxes in the same zone as the information requester. The network name =:=@* means all 
named entities of all types in the requester's zone. Mona:=@*refers to all entities named Mona in 
the requester's zone regardless of their type. ==Mona:=@* refers to all entities in the requestor's 
zone with a name that ends with Mona (e.g. Molly Mona). 

Entity names by definition are case-insensitive. Thus, Mona:Mailbox@Bandley3 is considered 
the same as Mona:mailbox:bandley3 and MONA:MAILBOX:BANDLEY3. For characters in the 
standard ASCII character set, it is fairly clear what this means: A ($41) is the same as a ($61), B is the 
same as b, and so forth through Z and z. But the string MAGANA should also be considered the 
same as the string Magana. ASCII definitions for non-English characters are not standardized. See 
Appendix D for a complete description of the diacritical matching used in Apple Talk. 

+ Note: The character $FF is reserved as the first byte of an NBP object, type, or zone string. 
This character is reserved to provide flexibility in future development. 

Name binding 
Before a named entity can be accessed over an Apple Talk network or internet, the address of that 
entity must be obtained through a process known as name binding. 

Name binding can be visualized as a mapping of an entity name into its internet socket address 
or, equivalently, as a lookup of the address in a large database. For the case of a single nonextended 
network, the network number field of the internet socket address will always be equal to 0 
(unknown). 

Name binding can be done at various times. One strategy is to configure the address of the 
named entity into the system trying to gain access to that entity. This strategy, static binding, is 
not appropriate for systems such as AppleTalk in which the node ID can change every time a node 
is activated on the network. 

Name binding 7-5 



Although entities can move on a network, their names seldom change. For this reason, it is 
preferable to use names in identifying entities. Services, such as NBP, can then be used to bind 
names dynamically to internet addresses. This binding can be done when the user's node is first 
brought up (known as early binding) or just before access to the named entity is obtained (known 
as late binding). Early binding may result in the use of out-of-date information when the resource is 
accessed, possibly long after the user's node was brought up. However, since the binding process 
adds further delay, late binding could slow down the user's initial access to the named entity. Late 
binding is the appropriate method to use when the entity is expected to move on the internet. 

Names directory and names tables 

Each node maintains a names table containing name-to-entity internet address mappings (known 
as NBP name-address tuples) of all entities in that node. The names directory (ND) is a distributed 
database of name-to-address mappings; it is the union of the individual names tables in the nodes 
of the internet. The database does not require different portions to be duplicated. The database can 
be distributed among all nodes containing named NVEs. 

Name binding is accomplished by using NBP to look up the entity's address in the names 
directory. NBP does not require the use of name servers. However, its design allows the use of 
name servers if they are available. 

Aliases and enumerators 

NBP allows an NVE to have more than one name. Each of these aliases must be included in the 
names table as an independent entity. 

To simplify and speed up the ability to distinguish between multiple names associated with a 
particular socket, an enumerator value is associated with each names table entry. The enumerator 
value is a 1-byte integer, invisible to the clients of NBP. Each NBP implementation can develop its 
own scheme for generating enumerator values to be included in the names table. The scheme 
developed requires that no two entries corresponding to the same socket have the same 
enumerator value. 

7-6 C H A PTE R 7 Name Binding Protocol 



Names information socket 

Each node implements an NBP process on a statically assigned socket (socket number 2) known as 
the names information socket (NIS). This process is responsible for maintaining the node's 
names table and for accepting and servicing requests to look up names from within the node and 
from the network. 

Name binding services 

The name binding protocol provides four basic services: 

• name registration 

• name deletion 

• name lookup 

• name confirmation 

These services are described in the following sections. 

Name registration 

Any entity can enter its name and socket number into its node's names table to make itself visible 
by name by using the name registration call to the node's NBP process. 

The node's NBP process must first verify that the name is not already in use by looking up the 
name in the node's zone. If the name is already in use, the registration attempt is aborted. 
Otherwise, the name and the corresponding socket number are inserted into the node's names table. 
The NBP process then enters the corresponding name-to-address mapping in the ND. 

When a node starts up, its names table is empty. When restarted, each NVE must reregister its 
name(s) in the names table. 

Name binding services 7-7 



Name deletion 

A named entity should delete its name-to-address mapping from the ND when it wants to make 
itself invisible. The most common reason for deleting the mapping is that the entity terminates 
operation. 

To cause a name to be deleted, the entity issues a name deletion call to the node's NBP process. 
The name deletion call deletes the corresponding name-to-address mapping from the node's names 
table. 

Name lookup 

Before obtaining access to a named entity, the user (or application) must perform a binding of the 
entity's name to its internet socket address. Binding is done by issuing a name lookup call to the 
user node's NBP process. This process then uses NBP to perform a search through the ND for the 
named entity. If it is found, then the corresponding address is returned to the caller. Otherwise, an 
entity not found error condition is returned by NBP. 

The name lookup operation can fmd more than one entity matching the name specified in the 
call, especially when the name includes wildcards ( = and s:= ). The interface to the user must have 
provisions for handling this case. 

NBP does not allow the use of abbreviated names; for example, NBP does not permit reference 
to Mona:Mailbox. The complete reference Mona:Mailbox@Bandley3 or Mona:Mailbox@* must be 
provided. Provisions can be made in the user interface to permit abbreviations. The interface must 
then produce the complete name before passing it on to NBP. 

Name confirmation 

The name lookup call performs a zone-wide ND search. More specific confumation is needed in 
certain situations. For example, if early binding was performed, the binding must be confirmed 
when access to the named entity has been obtained. For this purpose, NBP has a name 
confmnation call in which the caller provides the complete name and address of the entity. This call 
in effect performs a name search in the entity's node to confmn that the mapping is still valid. 

Although a new name lookup can lead to the same result, the confumation produces less 
network traffic. Name confmnation is the recommended and preferable call to use when 
confmning mappings obtained through early binding. 

7-8 C H A PTE R 7 Name Binding Protocol 



NBP on a single network 
Name lookup is quite simple on a system consisting of a single AppleTalk network. 

When a user issues a name registration (or lookup) call to the NBP process in its node, this 
process first examines its own names table to determine whether the name is available there. If it is, 
in the case of a registration attempt, the call is aborted with a name already taken error condition. 
In the case of a name lookup, the information in the names table is a partial response. (Entities in 
other nodes may match the specified name.) 

NBP then prepares an NBP Lookup packet (LkUp packet) and calls DDP to broadcast the LkUp 
packet over the network for delivery to the NIS. Only nodes that have an NBP process will have the 
NIS open. In these nodes, the LkUp packet is delivered to the NBP process, which searches its names 
table for a potential match. If no match is found, the packet is ignored. If a match is found, a LkUp
Reply packet is returned to the address from which the LkUp packet was received. This LkUp-Reply 
packet contains the matching name-address tuples found in the replying node's names table. 

The receipt of one or more replies allows the requesting NBP process to compile a list of name
to-address mappings. If the lookup was perfonned in response to a name registration call, then the 
call must be aborted since the name is already taken. 

Since DDP provides only a best-effort delivery service, the requesting NBP process sends the 
LkUp packet several times before returning the compiled mappings to the requesting user. If no 
replies are received, then no entity is currently using the specified name. For a name registration call, 
the requested name-to-address mapping is entered into the node's names table. For a name lookup 
call, the user is infonned of a no such entity result. 

Sending the LkUp packet several times implies that the same name-to-address mapping could 
be received several times by the requesting node. These duplicates must be ftltered out of the list of 
mappings. One way to ftlter the list of mappings is to compare the name strings and the address 
fields with each entry in the compiled list; this method, however, is inefficient. Comparison of the 
4-byte address fields is insufficient because of the possibility of aliases. Using the enumerator value 
together with the address resolves this problem and accelerates the filtering of duplicates. 

Name confirmation is similar to name lookup except that the caller provides the name-to
address mapping to be confmned. The LkUp packet is not broadcast; it is sent directly to the NIS at 
the specified internet node address. This process can be repeated several times to protect against 
lost packets or against the target node being temporarily busy. 

+ Note: On a single AppleTalk network, there is only one zone, which should be considered 
unnamed (zone names originate in routers). Any request made by a client to perfonn a 
lookup with a zone name other than an asterisk (*) should be rejected with an error. 

NBP on a single network 7-9 



NBP on an internet 

The use of broadcast packets to perfonn name lookup is impractical in internets because DDP does not 
allow a broadcast to all nodes in the internet. DDP can broadcast datagrams to all nodes with a single 
specified network number in the internet. These broadcasts are known as directed broadcasts. If 
NBP were to send a directed broadcast to every network in the internet, the traffic generated would be 
considerable. Furthermore, in some cases, the excessively large lists of name-address mappings compiled 
would be cumbersome for the user. For these reasons, the concept of zones is introduced. 

Zones 

A zone is an arbitrary subset of the Apple Talk nodes in an internet. A particular network can contain 
nodes belonging to any number of zones (although all nodes in a non-extended network must 
belong to the same zone). A particular node belongs to only one zone. Nodes choose their zone at 
startup time from a list of zones available for their network. The union of all zones is the internet. A 
zone is identified by a string of no more than 32 characters. 

The concept of zones is provided to establish departmental or other user-understandable 
groupings of the entities of the internet. Zones are intelligible only to NBP and to the related Zone 
Infonnation Protocol (ZIP). (See Chapter 8, "Zone Information Protocol.") 

Name lookup on an internet 

Internet routers 0Rs) participate in the name lookup protocol of an internet. The NBP process in the 
requesting node prepares an NBP Broadcast Request packet (BrRq packet) and sends it to the NIS of 
A-ROUfER (see "RTMP and Nonrouter Nodes" in Chapter 5, "Routing Table Maintenance Protocol"). 
The NBP process in the router, in cooperation with the NBP processes in the other routers of the 
internet, arranges to convert the BrRq packet into one Forward Request (FwdReq) packet for each 
network that contains nodes in the target zone of the lookup request. (The exact details of this 
algorithm are specified in Chapter 8, "Zone Infonnation Protocol.") Each of these FwdReq packets is 
then sent to the NIS in any router directly connected to the corresponding network. (These packets 
are addressed to DDP node address zero.) When this router receives the FwdReq, it converts the 
FwdReq to a LkUp packet and broadcasts it to the NIS in all nodes in the target zone on the 
destination network. Where possible this broadcasting is done using zone-specific multicast, described 
in Chapter 8, "Zone Information Protocol. • The NBP replies are returned to the original requester. 

7-10 CHAPTER 7 Name Binding Protocol 



Since routers on the internet are responsible for generating zone-wide broadcasts, routers must 
have a complete mapping of zone names to their corresponding networks. ZIP establishes and 
maintains these mappings, as discussed in Chapter 8, "Zone Information Protocol." Nodes that are 
not routers do not need to know anything about the mapping between networks and zones. 
Nodes only need to be able to verify that a lookup is intended for their zone or a zone name of 
asterisk ( * ). (Nodes on nonextended networks need not even do this.) 

+ Note: On an internet, nodes on extended networks performing lookups in their own zone 
must replace a zone name of asterisk ( * ) with their actual zone name before sending the 
packet to A-ROUTER. All nodes performing lookups in their own zone will receive LkUp 
packets from themselves (actually sent by a router). The node's NBP process should expect 
to receive these packets and must reply to them. 

NBP interface 

The following sections describe the four calls that provide the user with all the functionality of 
name binding: 

• registering a name 

• removing a name 

• looking up a name 

• confirming a name 

+ Note: All calls to NBP take an entity name as a parameter. However, the zone name is 
meaningful only in the lookup call. In all other calls, the zone name is required, for 
consistency, to be an asterisk(*). 

NBP interface 7-11 



Registering a name 

This call is used by an NBP client to register an entity name and its associated socket address. 
Special characters are not allowed in the object and type fields; the zone name field must be equal to 
an asterisk ( • ) or its equivalent. 

Call parameters entity name 

socket number 

Returned 
parameters 

success 
failure: name conflict; invalid name or socket 

Although this feature is not required in NBP, the implementation of the name registration call could 
verify that the socket is actually open. 

Removing a name 

This call is made to remove an entity name from the node's names table. Wildcard characters are not 
allowed in the object and type fields; the zone name field must be an asterisk ( • ). 

Call parameter entity name 

Returned success 
parameters failure: name not found 

7-12 C HAP T E R 7 Name Binding Protocol 



Looking up a name 

This call is used to map between an entity's name and its internet socket address. Special characters 
are allowed in the name to make the search as general as necessary. More than one address matching 
the entity name is possible. For each match, this call returns the name and its internet socket 
address. The names returned contain fully specified object and type fields; the zone name, however, 
may be returned as an asterisk ( * ), regardless of the zone specified. 

can parameters entity name 

Returned 
parameters 

maxMatches 

success 

failure: name not found 

list of entity names and their corresponding internet socket addresses 

The parameter maxMatches is a positive integer that specifies the maximum number of matching 
name-to-address mappings needed. This parameter is useful if wildcards, such as equal signs ( = ), are 
used by the caller in the entity name parameter. 

+ Note: All Apple Talk Phase 2 nodes must_ support the approximately equal sign ( =) wildcard 
feature. However, some nodes on LocalTalk may not have implemented this feature yet. 
Such nodes may not respond correctly to lookups containing this character in the object 
and type fields. 

Confirming a name 

This call confinns a caller-supplied mapping between entity name and address. Special characters are 
not allowed in the object and type fields of the name. 

can parameters entity name 

socket address 

Returned success: mapping still valid 
parameters wrong-socket: net and node number valid and socket number invalid 

failure: mapping invalid 

new socket: returned only in the case of a wrong-socket error 

NBP interface 7·13 



NBP packet formats 

NBP packets are identified by a DDP type field of 2. NBP packets are of four types: 

• BrRq 

• LkUp 

• LkUp-Reply 

• FwdReq 

The fonnat of NBP packets is shown in Figure 7-1. The packet consists of an NBP header followed 
by one or more name-address tuples. 

The following sections describe the NBP packet fields: function, tuple count, NBP ID, and NBP tuple. 

• Figure 7-1 NBP packet fonnat 

~-1 h)1C(8bits)~ 

{ 

•
•• 1 ·:1 Data-link header 

I 
DOl' header -

• • • 

llrBq=I --+ 
Lkt:p = 2 

LkUp-Hcply = 3 
FwdR.:q = -1 

()I) I' type = 2 

Function I 

:--1111' lD 

NBP tuple 

:\liP tupk 

Tuple 
count 

• • • 

7-14 CHAPTER 7 Name Binding Protocol 



Function 

The high-order 4 bits of the first byte of the NBP header are used to indicate the type of NBP 
packet. The values are 1 for BrRq, 2 for LkUp, 3 for LkUp-Reply, and 4 for FwdReq. 

Tuple count 

The low-order 4 bits of the first byte of the NBP header contain a count of the number of NBP 
tuples in that packet. BrRq, FwdReq, and LkUp packets carry one tuple (the name being looked up 
or confirmed). The tuple-count field for these packets is always equal to 1. 

NJJPID 

In order to allow a node to have multiple pending lookup requests, an 8-bit ID is generated by the 
NBP process issuing the BrRq or LkUp packets. The LkUp-Reply packets must contain the same 
NBP ID as the LkUp or BrRq packet to which they correspond. 

NJJP tuple 

The format of the NBP tuples, the name-address pairs, is shown in Figure 7-2. The tuple consists 
of the entity's internet socket address, a 1-byte enumerator field, and the entity name. The address 
field appears first in the tuple. The fifth byte in a tuple is the enumerator field. The enumerator field 
is included to handle the situation in which more than one name has been registered on the same 
socket. The entity name consists of three string fields: one each for the object, type, and zone 
names. Each of these strings consists of a leading 1-byte string length followed by no more than 32 
string bytes. The string length represents the number of bytes (characters) in the string. The three 
strings are concatenated without intervening fillers. 

+ Note: NBP specifically permits the use of aliases (or, alternately, the use of a single socket by 
more than one NVE). In this case, each alias is given a unique enumerator value, which is kept 
in the names table along with the name-address mapping. The enumerator field is not 
significant in a LkUp or BrRq packet and is ignored by the recipient of these packets. 

NBP packet formats 7-15 



In BrRq, FwdReq, and LkUp packets, which carry only a single tuple, the address field contains 
the internet address of the requester, allowing the responder to address the LkUp-Reply datagram. 
In a LkUp-Reply packet, the correct enumerator value must be included in each tuple. This value is 
used for duplicate filtering. 

• Figure 7-2 NBP tuple 

I ' b)1C (8 bits) I 
Network - -
number 

Emity address 

Node))) 

Socket numix'r 

EnumcrJtor 

Object field length 

• • • Object • • • 

Type field length 

Emity name • • • Type • • • 

Zone field length 

• • • Zone • • • 
I I 

7-16 CHAPTER 7 Name Binding Protocol 



Because nonnal nodes on nonextended networks (and hence their NBP processes) are 
sometimes unaware of zone names, including their own zone name, tuples in LkUp-Reply packets 
may not specify a zone name. The zone names in these tuples may be an asterisk ( * ), regardless of 
the zone in which the lookup is perfonned. Requesters will know the zone name of these responses, 
because it must be the zone they asked for in the lookup request. 

• Note: In a LkUp, FwdReq, or BrRq request, a null zone name Oength byte equals 0) should be 
treated as equivalent to an asterisk ( * ). 

NBP packet fonnats 7-17 



Chapter 8 Zone Information Protocol 

CONTENTS 

ZIP services I 8-4 

Network-to-zone-name mapping I 8-4 
Zone infonnation table I 8-4 
Zone information socket: ZIP Queries and Replies I 8-5 
ZIT maintenance I 8-5 

Zone name listing I 8-7 

Zone name acquisition I 8-9 
Verifying a saved zone name I 8-9 
Choosing a new zone name I 8-10 
Zone multicasting I 8-10 
Aging the zone name I 8-10 

Packet formats I 8-11 
ZIP Query and Reply I 8-11 
ZIP ATP Requests I 8-13 
ZIP GetNetlnfo Request and Reply I 8-16 

Zone multicast address computation I 8-18 

NBP routing in IRs I 8-18 
Generating FwdReq packets I 8-19 
Converting FwdReqs to LkUps I 8-19 

Zones list assignment I 8-20 

8-1 



Zones list changing I 8-21 
Changing zones lists in routers I 8-21 
Changing zone names in nodes I 8-22 

Timer values I 8-24 

• 

8-2 CHAPTER 8 Zone Infonnation Protocol 



0 N E 0 F T H E F U N C TI 0 N S ofrouters is to maintain a mapping 

between networks and zone names, as mentioned in Chapter 7, "Name 

Binding Protocol." This network-to-zone-name mapping is maintained by the 

Zone Information Protocol (ZIP). 

This chapter describes ZIP and provides information about 

• network-to-zone-name mapping 

• acquisition of a zone name by a node 

• the structure of a ZIP packet • 

Zone Information Protocol 8-3 



ZIP services 

An important feature of ZIP is that most of its services are transparent to nonrouter nodes. Non
router nodes use a small subset of ZIP during the startup process to choose their zone and also to 
obtain information about the zone structure of the internet. But ZIP is implemented primarily by 
routers. ZIP provides three major services as follows: 

• maintenance of the network-to-zone-name mapping of the internet 

• support for the selection of a zone name by a node at startup 

• support for various commands that may be needed by nonrouter nodes for obtaining this mapping 

The first of these services applies only to routers; the second and third applies to both router and 
nonrouter nodes. 

Network-to-zone-name mapping 

Each AppleTalk network has associated with it a zones list This list specifies the zone names that 
can be chosen by nodes on that network during the startup process and is used by the NBP process 
in routers to construct a zone-wide broadcast. An extended network can be set up with from 1 to 
255 zone names in its zones list; a nonextended network can only contain 1 zone name in its zones 
list. 

The network-to-zone-name mapping service of ZIP is provided by routers. These nodes have a 
ZIP process that opens the zone information socket and maintains a zone information table (see 
Figure 5-2). 

Zone information table 

Under stable conditions, each router maintains a complete network-to-zone-name mapping of the 
internet, known as the zone information table czm. This table consists of one entry for each 
network in the internet. The entry is a tuple of the form <network range, zones list>. The zones list 
field can be NIL, indicating that the zones list for that network is unknown (this condition is 
temporary); otherwise, the zones list field consists of a number of a case-insensitive strings 
specifying the zone names for that network. 

8-4 CHAP T E R 8 Zone Information Protocol 



+ Note: See Appendix D for a precise definition of case-insensitivity. 

The ZIP process in a router recognizes new networks on the internet by monitoring the routing 
table of the Routing Table Maintenance Protocol (RTMP). (For more information on the routing 
table, refer to Chapter 5.) When the ZIP process identifies an entry in the routing table that is not in 
the ZIT, the ZIP process creates a new ZIT entry for that network with a zones list of NIL and 
initiates an attempt to detennine the network's zone list. Likewise, if the ZIP process discovers 
that the ZIT contains an entry whose network number range is not in the routing table, the ZIP 
process then concludes that the network is no longer on the internet and removes the network's 
entry from the ZIT. 

Zone information socket: ZIP Queries and Replies 

Associated with the ZIP process in routers is a statically assigned socket known as the zone 
information socket (ZIS). During its initialization, the ZIP process opens the ZIS (socket number 
6). Requests for zone infonnation must be addressed to this socket. Routers also respond to those 
requests through this socket. The requests, known as ZIP Queries, contain a list of network 
numbers whose corresponding zones lists the requesting node wishes to detennine. A router 
receiving such a request responds with a ZIP Reply listing the requested zones lists known to it. 
(The router does not respond if it does not know any of the requested zones lists.) 

ZIT maintenance 

In addition to the port descriptor fields used by a router's RTMP (as described in Chapter 5), ZIP 
requires a field to hold the zones list of the port's network. The zones list field is necessary only for 
ports connected to AppleTalk networks and only for those ports for which the router contains 
seed infonnation. One of the zone names in each list in the port descriptors is chosen as the default 
zone. Its use is described later in the section "Zone Name Acquisition." The zones list field can be 
NIL, indicating unknown, as long as the restrictions specified in "Zone Name Assignment," later in 
this chapter, are adhered to. 

Network-to-zone-name mapping 8-S 



At the time the router is initialized, its ZIT consists of one entry for each directly connected 
AppleTalk network for which it is a seed router. Both the network number ranges and the zones 
list fields are taken from the port descriptor for those networks. Additionally, ZIP monitors the 
routing table for the addition of networks that the router has just discovered. When the router 
first recognizes such a network, it creates a new ZIT entry with a zones list field of NIL. Whenever 
a ZIT entry is created with a zones list of NIL (either as just described or at initialization when a ZIT 
entry is taken from a port descriptor), the router's ZIP process sends a ZIP Query in an attempt to 
discover the zone list for that network. 

This query is sent to the ZIS of the destination node whose address is determined as follows. 
If the network is directly connected to the router, then the query is broadcast on that network. 
Otherwise, the query is sent to the router indicated in the next-router field of the network's 
routing table entry. 

A router that receives a ZIP Query should respond to the requesting socket with a series of ZIP 
Replies indicating the requested zones lists. Routers that are unaware of the requested zones lists or 
do not yet have complete zones lists should ignore the ZIP Query and need not respond. Upon 
receiving a ZIP Reply, a router enters the zones lists provided by the reply into the appropriate ZIT 
entries. For some queries, no reply or an incomplete reply may be received; the query may have been 
lost, or the queried routers may not have the requested information. For this case, ZIP maintains a 
background timer for the purpose of retransmitting these queries. Whenever this timer expires, ZIP 
retransmits one query for each entry in its ZIT whose zones list is still NIL or incomplete. 

There are two forms of ZIP Replies. The first form is used when the zones list for a given 
network (or networks) can fit in one reply packet This will generally be the case. However if this is 
not the case, the router replies with a series of extended ZIP reply packets. Each packet indicates 
the total number of zone names for the requested network, and contains as many zone names as 
will fit. The router receiving the extended ZIP replies adds the zone names to the list for the 
requested network, and then checks to see if that list contains the indicated total number of zone 
names. This being the case, the list is said to be complete, and can be used to answer other routers' 
ZIP queries and for purposes of NBP lookups. If the list is not complete, it should not be used for 
these purposes until it is completed. 

If ZIP's background timer expires and a list is still incomplete (a packet may have been lost), ZIP 
should retransmit the ZIP Query. It will then receive the entire reply sequence over again, and 
should be able to complete its list. In this case it will have to ftlter out names that are already in its 
list so as to not add them to the list twice. 

8-6 C H A P T E R 8 Zone Information Protocol 



Through ZIP Queries and Replies zone names will propagate outward dynamically from the 
named network itself. Those routers that are 1 hop away receive the infonnation on the first query, 
those 2 hops away may not receive it until the second, and so forth. Eventually, on a stable internet, 
the ZIT in every router will contain the complete network-to-zone-name mapping and no further 
ZIP activity will take place. 

ZIP also monitors the routing table to determine whether a network has gone down (in other 
words, to detennine whether the network is listed in the ZIT but not in the routing table). In this 
case, ZIP deletes the corresponding ZIT entry. The network could reappear later with a different 
zones list, which will then be discovered anew. 

Zone name listing 
Any AppleTalk node can send ZIP Queries to routers in order to obtain the zones list corresponding 
to one or more networks, including the network to which the node itself is connected. The routers 
respond with ZIP Replies, which contain the desired zones list. 

However, the use of ZIP Queries for the purpose of compiling zones lists has two 
shortcomings, especially for nonrouter nodes. First, the ZIP Query and Reply mechanism does not 
provide a simple way of obtaining a list of all the zones in the internet. Second, since ZIP Queries 
and Replies are datagrarns delivered on a best-effort basis, the requesting node has to implement a 
timeout-and-retry mechanism in order to ensure the reception of a response. 

To overcome these limitations, ZIP provides three additional requests, GetZoneList 
GetLocaiZones, and GetMyZone. The purpose of the GetZoneList request is to obtain a list of all the 
zones in the internet; GetLocalZones is used to obtain the list of all the zones on the requestor's 
network. The GetMyZone request is used to obtain the name of the zone in which the requesting 
node is located (only on nonextended networks, since the node knows this infonnation on an 
extended network). 

These functions are typical request-response transactions. The nonrouter node requests some 
infonnation from a router, and the router responds with that information. For this reason, the 
AppleTalk Transaction Protocol (ATP), described in Chapter 9, is used for implementing these three 
functions. 

GetZoneList, GetLocalZones, and GetMyZone are sent by ZIP as ATP requests of the at-least
once type (see Chapter 9). The requests are sent to the ZIS in any router on any network (usually 
the network to which the requesting node is attached). These requests always ask for a single 
response packet. 

Zone name listing 8-7 



The response to the GetZoneList or GetLocalZones request provides a list of all the zones on the 
internet or the requestor's network. Since this list may not fit in one ATP response packet, each 
request contains an index value from which to start including names in the corresponding response 
(zone names in the router are assumed to be numbered starting with 1). To obtain the complete 
zones list, a node sends a series of GetZoneList or GetLocalZones requests. The ftrSt of these 
requests specifies an index of 1. The user bytes field of the corresponding response contains the 
number of zone names in that response packet; these bytes also specify whether more zone names 
exist that did not fit in the response. In that instance, the requesting node sends out another 
request, with the index equal to the index sent in the previous request plus the number of names in 
the last response. By repeating this process, the node can obtain the complete zones list from the 
router. 

Additionally, if more than one request is necessary to obtain the complete zones list, then all 
requests must be sent to the same router because different routers may have their zones lists 
arranged in a different order. Furthermore, a particular zone name cannot be partitioned between 
two response packets. 

+ Note: A 0-byte response will be returned by a router if the index specified in the request is 
greater than the index of the last zone in the list (and the user bytes field will indicate no 
more zones). Routers should make every attempt to send a particular zone's name only once 
in response to a GetZoneList request. A node may receive a particular zone's name more than 
once, especially during periods when zone names are being changed. 

GetLocalZones on a nonextended network should be treated exactly as a GetMyZone-that 
is the router should return the zone name associated with the requestor's network. 

A GetMyZone request is used to obtain the name of the zone in which the requesting node is 
located. A GetMyZone request asks a router to provide the zone name of the network through 
which the request was received by the router. This request is essentially a simplified version of the 
GetZoneList request, in which only one zone name is returned. A 0-byte response is returned if the 
router does not know the name of the zone (this condition is temporary). This request should only 
be made by nodes on nonextended networks; nodes on extended networks obtain this information 
as part of the startup process. 

8-8 C H A P T E R 8 Zone Information Protocol 



Zone name acquisition 
Nodes on extended networks choose their zone during the startup process. The zone name is 
chosen from the list that has been set up in the routers for their network. The zone name 
acquisition process is only undertaken by nodes on extended networks; nodes on nonextended 
networks need not even be aware of their zone name. 

Verifying a saved zone name 

Nodes save their last zone name in long term storage. When a node starts up, it obtains a provisional 
node address as described in Chapter 4, "Datagram Delivery Protocol." It then broadcasts a 
GetNetlnfo request containing the saved zone name (or NIL if there is no saved zone name) to the 
zone information socket (socket 6). Routers receiving the request respond to the requester's 
internet address with information about the network connected to the port through which the 
request was received (which is the network on which the node resides). This information includes 
the network number range (for verifying that the node's provisional address is valid) and an 
indication as to whether the requested zone name is a valid one for that network. If the requested 
zone name is valid, it should be used as the node's current zone. If the requested zone name is 
invalid, the GetNetlnfo response also includes the default zone name for that network, which 
should then be used by the node until another one is chosen. 

In cases where a node's provisional address is invalid, routers will not be able to respond to the 
node in a directed manner. An address is invalid if the network number is neither in the startup 
range nor in the network number range assigned to the node's network. In these cases, if the 
request was sent via a broadcast, the routers should respond with a broadcast 

The GetNetlnfo request sent by a node during startup should be retransmitted several times 
to insure that a response is received if a router is available. If no response is received, it should be 
assumed that no router is available. In this case, the network contains no zone names; only a zone 
name of asterisk(*) is valid in NBP lookups. If a router becomes available later (as indicated by 
receipt of an RTMP Data packet), the node can send a GetNetlnfo request again. 

Zone name acquisition 8-9 



Choosing a new zone name 

In many cases a node may wish to choose a new zone name, for example when the node has no 
saved zone name at startup or when that saved zone name is invalid. The node can obtain the list of 
valid zone names for its network through the GetLocalZones request and choose one from that list. 
At that time, it must also register on a new zone multicast address (see the following section). 

It is recommended that changing a node's zone name be done with care if it is performed at any 
time other than startup, since changing a node's zone name while it has NBP names registered could 
result in duplicate NBP names in the node's new zone. The node may wish to reregister these names 
to be safe. 

Zone multicasting 

A response to the GetNetlnfo request also provides the requesting node with the node's zone 
multicast address. This address, computed in the routers, is a data·link level multicast address used 
by the node for receiving NBP lookups. NBP lookups are multicasted by routers to the zone 
multicast address associated with the lookup's destination zone name. The details of this process 
are described later in the section, "NBP Routing in IRs"; details of the computation of zone 
multicast addresses are described later in the section "Zone Multicast Address Computation." 

Zone multicasting is intended to prevent nodes not in the lookup's destination zone from being 
interrupted by lookup packets. However, certain data links may not support multicasting or may 
provide only a limited number of multicast addresses. For this reason, even though registered on a 
zone multicast address, nodes may receive lookup packets for other zones. Nodes must respond 
only to NBP lookups for their zone name. 

Aging the zone name 

Zones lists are defined in routers. If the last router on an extended network goes down, the 
situation should revert to that in which no routers exist on the network. Details of aging A
ROUTER and THIS-NET-RANGE are specified in Chapter 5, "Routing Table Maintenence Protocol." 
At the same time as these two quantities are aged, the node's zone name also becomes invalid. Until 
a router reappears on the network, the node should only respond to NBP lookups with a zone name 
of asterisk(*). If a router becomes available later, the node's saved zone name should be verified as 
if a router had never been active before on the network. 

8·10 C H A P T E R 8 Zone Information Protocol 



Packet formats 
Some ZIP packets are identified by a DDP type field of 6. Other ZIP packets use ATP. ZIP packets 
(described in the following sections) are of three types: 

• Query and Reply 

• A TP Requests 

• GetNetlnfo request and reply 

ZIP Query and Reply 

Figure 8-1 summarizes the formats for ZIP Query and Reply packets. ZIP Queries are always sent to 
the ZIS of a router (or broadcast to the ZIS); ZIP Replies are always sent from the router to the source 
socket of the corresponding ZIP Query. The DDP type field in these packets is set to 6 to indicate ZIP. 
These packets contain a ZIP header that includes a ZIP function byte indicating the following: 

• 1 =Query 

• 2=Reply 

• 8 = Extended Reply 

The ZIP header also contains a network count (n). Queries contain n network numbers for which zone 
lists are being sought. These network numbers indicate the start of the range associated with the 
desired networks. Replies contain the number of zones lists indicated in the Reply header. Replies (but 
not Extended Replies) can contain any number of zones lists, as long as the zones list for each network 
is entirely contained in the Reply packet. Replies consist of a series of network-number/zone-name 
pairs, with zone names preceded by a length byte. The zones list for a given network must be 
contiguous in the packet, with each zone name in that list preceded by the first network number in 
the range of the requested network. 

Extended Replies can contain only one zones list. The Extended Reply packet consists of a series of 
network-number/zone-name pairs, with the network number indicating the start of the requested 
range (the network numbers in each pair will all be the same in an Extended Reply). The network count 
in the header indicates, not the number of zones names in the packet, but the number of zone names 
in the entire zones list for the requested network, which may span more than one packet. 

+ Note: Extended ZIP Replies may also be used for responding to ZIP queries with zones lists 
that all fit in one Reply packet. In this case, the network count will be equal to the number 
of zone names in the packet. 

Packet formats 8-11 



• Figure 8-1 ZIP Query and Reply packet fonnats 

Data-link 
header 

DDP 
header 

ZIP Query 

I ' h)~<.' (8 bits) ------j 
• • • { : 

1---1 -----

• • • • • • 
-- -- --- -- --------------

- Destination sockrt = 6 

• • • 

• • • 

ZIP Reply 

• • • 

• • • 

----------------------- ---------- -------------

ZIP 
header 

ZIP 
d.1t3 

{ 
/ 

-

f-

1-

• • • 

DDI'typr • 6 

ZIP function • I 

~etwork counr 

Network I -

1\ctwork 2 -

• • • 

-

• • • 

-

• • • 

-

• • • 

Source socket = 6 

DDPtype • 6 

ZIP function = 2 or 8 

:\ctwork cou111 

Network I 

Length of zone name I 

Zone 1 name 

1\etwork 1 

Length of zone name 2 

Zone 2 name 

'ctwork 2 

8-12 CHAPTER 8 Zone Infonnation Protocol 

-

• • • 

-

• • • 

-

• • • 

Zones list for network 1 

Zones list for network 2 
(noncxtcndcd ZIP reply only) 



ZIP ATP Requests 

Figure 8-2 summarizes the fonnat of the GetZoneList and GetLocalZones request and reply packets. 
The GetZoneList request contains a function code of 8, indicating GetZoneList, and the desired start 
index, both in the ATP user bytes field. The GetZoneListReply contains in the ATP user bytes field a 
LastFlag that is not 0 if the response contains the last zone name in the zone list. A field indicating 
the number of zones contained in the ATP data part is also in the user bytes field. The 
GetLocalZones request contains a function code of 9 and is otherwise similar to the GetZoneList 
request. 

Packet formats 8-13 



• Figure 8-2 GetZoneList and GetLocalZones request and reply packets 

ATI' 
header 

Data-link 
hc:1der 

DDP 
he:1der 

ATP 
user 

b)1CS 

-

'-. 

f 

-

"-

GetZonellst 
GctLocalZones 

I' b)1C(8 bits) -j 
! ! 
• • • • 
I I 
• • • • • • 

-- ---- -------- ---- -----
Destination Sotkct = 6 

---- ------- -------- --- -

DDI' type= 3 

TRcq = 01000000 

Bitmap • ()()()()()()()! 

- TID -

Function • 8 (GetZoncList) 
or 9 (GctLocalZones) 

0 

- Stan Index -

All' data 

8-14 C H A P T E R 8 Zone Infonnation Protocol 

~ 

-

GetZonelistReply 
GetLocalZonesReply 

,_, byte (8bits) -j 

• • • 

• • • 

• • • 

• • • 

------- --------- -------
Source Sockli • 6 

DDI' type · 3 

TRcsp • 10011)()()() 

SL'<jucncc number • 0 

- ·nn -

l~lStFiag 

0 

Number or - -
zones 111 packet 

Length or zone name I 

• • • Zone name I • • • 

Length or zone name 2 

• • • Zone name 2 • • • 
I I 
• • • • • • 



Figure 8-3 illustrates the GetMyZone request and reply packets. The GetMyZone request 
contains a function code of 7 in the user bytes field. (All other user bytes should be 0.) The response 
usually indicates one zone name in the user bytes field and contains that zone name in the data field. 

• Figure 8-3 GetMyZone request and reply packets 

ATI' 
header 

GetMyZonc 

~-1 h)1~(8bitS)-j 

Data-link { l 
header : 

L---1 _ __. 

• • • 

DDI' 
h~adcr 

ATI' 
user 

bytes 

-

'-

/ 

-

'-

• • • • • • 
----- ------------------

Dcstin:nion ~<x:ket • 6 

--------------- --- --- --

DDP type= 3 

TRcq • 01000000 

Bitmap • 0000000 I 

- 110 -

Function • -

0 

St:tn Index • 0 - -

ATI' cL1ta 

/ 

-

'-

GcL\IyZoncRcply 

~I b)1C (8 hits) -j 

• • • 

• • • 

• • • 

I 
• • • 

------ --- ----- ---- -----
Source sock.:t • 6 

DDI' type = 3 

TRe.,p = 10010000 

Sequence number • 0 

- TID -

0 

0 

~ 
i\umhcr of -

70n<" in packet ~ I 

Length of zone name I 

Zone name I 

Packet formats 8-15 



ZIP GetNetlnfo Request and Reply 

Figure 8-4 illustrates the GetNetlnfo request and reply packets. The GetNetlnfo request is always 
sent to the ZIS of a router (or broadcasted to the ZIS); ZIP GetNetlnfo replies are always sent to 
the source socket of the corresponding request. (In the case where the requester broadcasts a 
request with an invalid node address, the reply may be broadcast.) The function byte in the ZIP 
header indicates the following: 

m 5 = GetNetlnfo request 

11 6 = GetNetlnfo reply 

The reply header also contains a byte of flags. These flags provide three pieces of information. The 
high bit of the byte is set if the zone name in the request is invalid for the network from which the 
request was sent. The next bit is set for data links that do not support multicast. The third bit is 
set if the network's zones list contains only one zone name. (In this case, there would be no need to 
send a GetLocalZones request to obtain the zones list.) All other bits are reserved and should be set 
to zero. 

The GetNetlnfo request data consists of 4 bytes of zeros (reserved) followed by the zone 
name for which information is being requested. The length byte should be set to zero if no zone 
name is being provided in the packet. 

The GetNetlnfo reply data begins with the starting and ending network numbers of the 
network on which the request was made. This range is always followed by a copy of the zone 
name from the request. Since GetNetlnfo replies are sometimes broadcast, nodes receiving such 
replies should use this zone name to verify that the response is for the zone name that they 
requested. If not, the reply should be ignored. 

The zone multicast address to be used by the node follows the copy of the requested zone 
name. This is the data-link address on which the node should register to receive NBP lookups. It is 
preceded by its length in bytes, which should be zero if the data link does not support multicast. In 
the case where the requested zone name is invalid (as indicated in the flag byte in the header), this 
zone multicast address is the zone multicast address of the default zone for the requested network, 
and is followed by the name of that default zone. Otherwise, it is the zone multicast address of the 
requested zone name, and no default zone name follows. 

8-16 C H A P T E R 8 Zone Information Protocol 



• Figure 8-4 GetNetlnfo request and reply packets 

ZIP GctNetlnfo Request 

I' byte (8 bits) --j 
Data-link 

header { :,_---1: 
I 

DDP 
header -

• • • 

Destination socket = 6 

DDPtype • 6 

ZIP command = 5 

• • • 

a lid 0 

Flag bits: 
7- zone inv 
6 -use broa 
5- only one 

dcast 
zone 

- -

- 0 -

- -

Zone name length 

• • • Zone name • • • 
I 

~ 

onlyif -
zone-invalid flag set 

ZIP GctNetlnfo Reply 

I ' byte (8 bits) --j 
• • • 

• • • 

• • • 

• • • 

---- --------------- ----
Source socket = 6 

DDPtypc • 6 

ZIP command = 6 

t 1 '1 'I Flags 

f--

f--

• • • 

• • • 

• • • 
I 

Network number 
range start 

Network number 
mnge end 

Zone name length 

Zone name 

Multit1lSI address length 

Multicast address 

Default zone length 

Default zone name 

-

-

• • • 

• • • 

• • • 
I 

Packet formats 8-17 



Zone multicast address computation 
The zone multicast address associated with a given zone name, on a given data link, is computed by 
the ZIP process in routers. It is then returned to requesting nodes through a GetNetinfo reply 
packet. The zone multicast address is based on the bytes in the zone name and the specific data link 
on which the address is to be used. 

To compute the zone multicast address, the ZIP process first converts the zone name to all 
uppercase characters (since zone names are case insensitive). The details of this conversion are 
documented in Appendix D. ZIP then converts this string into a number in the range 1-$FFFF by 
performing the DDP checksum algorithm on each byte of the zone name (not including the length 
byte). This algorithm, documented in Chapter 4, "Datagram Delivery Protocol," is repeated here: 

CkSum : = 0 ; 

FOR each byte in the zone name 

REPEAT the following algorithm : 
CkSum := CkSum + byte; (unsigned addition) 

Rotate CkSum left one bit, r otating the mos t significant bit into the 

least significant bit; 

IF, at the end, CkSum = 0 THEN 
CkSum := $FFFF (all ones). 

This hashed value, h, is then used as an index into an ordered list of zone multicast addresses 
associated with the underlying data link. If the data link provides n zone multicast addresses, a[O] 
through a[n-1], then the zone multicast address associated with index his a[h mod nl. mod is the 
modulo function, in other words, the remainder when h is divided by n. 

NBP routing in IRs 

As indicated in Chapter 7, "Name Binding Protocol," routers contain an NBP process that is 
responsible for the conversion of an NBP Broadcast Request (BrRq) to a zone-wide broadcast of 
NBP Lookup (LkUp) requests. 

The process consists of two stages. In the first stage, the router converts the BrRq packet into a 
series of FwdReq packets, one for each network which has been set up to include the specified 
zone. These FwdReq's are sent to the first router directly connected to each of these networks. The 
second stage of the process consists of the router receiving the FwdReq converting it to a LkUp 
and sending that LkUp to the correct zone multicast address. 

8-18 C H A P T E R 8 Zone Information Protocol 



Generating FwdReq packets 

The process of converting a BrRq into a series of FwdReqs is straightforward. The router obtains 
from its ZIT a list of all networks that include the specified zone. The router then uses DDP to 
send a FwdReq to the NIS of the first router directly connected to each of these networks. To do 
this, the router sends a FwdReq to node ID 0 of each network. Specifically, each FwdReq is sent to 
Apple Talk network number nnnn, node ID 0, where nnnn is the start of the range associated with 
each network. 

The DDP data part of a FwdReq packet is the same as that from the NBP Broadcast Request, 
except that the NBP function field must be equal to FwdReq. If, however, the BrRq originated on a 
nonextended network, the destination target zone name could be equal to asterisk ( * ). In this case, 
the router must substitute the zone name associated with that nonextended network before 
sending out the FwdReqs. (The router receiving the FwdReq would have no way of knowing this 
information.) If the router does not know the zone name yet, it should broadcast a LkUp packet on 
the requesting network, but not send out any FwdReqs. 

If the router receiving the BrRq is directly connected to one or more networks that include the 
specified zone name, these networks will be included in the list obtained from the ZIT. In this case, 
the router should send out LkUp packets on these directly connected networks as specified in the 
next section. 

Converting FwdReqs to LkUps 

A BrRq packet is converted into a series of FwdReq packets, one for each network containing the 
zone specified in the BrRq packet. The destination of each of these FwdReq packets is the first 
router directly connected to the destination network. Along the way, routers that are not directly 
connected to the destination network will forward the packet towards the destination network in 
the usual manner. When a FwdReq packet is received by the router directly connected to the target 
network, that router is responsible for converting that packet to a LkUp request and broadcasting 
it on the appropriate zone multicast address. The DDP data part of a LkUp packet is exactly the 
same as that from the NBP FwdReq, except that the NBP function field must be equal to LkUp. 

NBP routing in IRs 8-19 



If the destination network of the LkUp packet is a nonextended network, the router simply 
changes the destination node ID to $FF and broadcasts the packet on that network (since a 
nonextended network has only one zone). If the destination network is extended, however, the 
router must also change the destination network number to $0000, so that the packet is received by 
all nodes on the network (within the correct zone multicast address). The router must compute the 
zone multicast address for the packet, based on the zone name in the packet and the data link on 
which the packet is to be sent. The router then calls DDP to broadcast the packet to the indicated 
multicast address. DDP in routers must provide the ability to send a packet directly to a data-link 
level multicast address. 

+ Note: NBP is defined so that the router's NBP process does not participate in the NBP response 
process; the response is sent directly to the original requester through DDP. It is important 
that the original requester's field be obtained from the address field of the NBP tuple. 

Zones list assignment 
The structure of a router's port descriptor is defined in Chapter 5, "Routing Table Maintenance 
Protocol." ZIP requires an additional zones list field in port descriptors. Zones lists are included in the 
port descriptors of router ports and are then propagated dynamically through ZIP to all internet 
routers. Zones lists in port descriptors include an indicator as to which zone name is the default 
zone. 

Only router ports connected to AppleTalk networks need to be associated with zones lists. For 
each AppleTalk network, at least one router on that network must be configured with the 
network's zones list; all other routers could have a zones list of NIL in their port descriptor for that 
network. If, for a given network, more than one router is configured with a non-NIL zone list, 
these lists must be the same (including the same default zone). In addition, only seed routers used 
for the purpose of specifying the network number range should contain zones lists that are not 
NIL. (In other words, if a router is not a seed router for routing information, it should not be a seed 
router for zone information.) Seed routers should confirm that their zone information does not 
conflict with that from another router on the same network, for instance through ZIP queries or 
GetLocalZones requests. 

8-20 CHAPTER 8 Zone Information Protocol 



A router having a NIL zone list discovers the names in that list by broadcasting a ZIP query on 
the network of interest, as described previously. To determine which zone name in the list is the 
default zone, the router broadcasts a ZIP GetNetlnfo request with a NIL zone name on that 
network (this packet can be sent directly to a router on that network if the address of one is 
known). 

+ Note: The default zone name for a given network is of interest only to routers (and nodes) 
on that network. Unlike the network's zone list, this information is not propagated to 
other routers on the internet. 

Zones list changing 
Under stable conditions, each network's zones list appears in the ZIT of every internet router. 
Changing a particular network's zones list requires changing that list in every internet router. 
Indeed, although routers on the stable internet are no longer sending ZIP Queries, each router must 
still be notified of the change in the zones list. One possible method of notifying all routers of the 
zones list change would be to send an internet-wide broadcast of the change request. Internet
wide broadcasting, however, is not supported by DDP and is both complicated and expensive in 
terms of network traffic. 

Changing zones lists in routers 

ZIP does not specify a way for changing the zones list of a network while that network is active as 
a part of the internet. It is envisioned that future network management protocols, to be defined 
by Apple, will provide this functionality. A network management system needs to be aware of all 
the routers on the internet, and with this knowledge it can implement an all-routers broadcast that 
notifies all routers on the internet as to the change in a zones list. 

Zones list changing 8-21 



Until such network management protocols are defined, the zones list associated with a 
network can only be changed by temporarily isolating that network from the internet. All the 
routers direcdy connected to the network should be brought down and the zones list changed in 
each of the seed routers. All the routers can then be brought back up. The routers, however, can not 
be brought back up until the old zones list from that network has disappeared from all the ZITs in 
the internet. It takes a certain amount of time for the network number range and zone name 
information about a network to age out of all routers in the internet once that network is no 
longer connected. Although this parameter is a function of the internet topology, ZIP defines it as a 
constant known as the ZIP bringback time. The exact value of the ZIP bringback time is defmed 
in "Timer Values" later in this chapter. 

Changing zone names in nodes 

Nodes on an extended network will need to be told if their zone name has been changed. This is so 
they can register on a new zone multicast address, and so they can perfonn correct NBP ftltering. 
ZIP specifies a packet, referred to as a ZIP Notify, which accomplishes this function. The format of 
a ZIP Notify packet is essentially the same as a ZIP GetNetlnfo Reply, except the function byte is 7 
to indicate Notify (see Figure 8-5). The packet specifies the old and new zone names, and the new 
zone multicast address. It is sent as part of a zones list change operation to the ZIS of nodes on the 
affected network. It should be sent to the old zone multicast address. Nodes on extended 
networks should maintain a ZIP stub on the ZIS for purposes of receiving ZIP Notifies. Upon 
receipt of a ZIP Notify (for the zone in which the node resides), the node should register on the 
new zone multicast address and change its zone name to that specified in the packet This zone 
name should also be changed in long tenn storage. 

+ Note: It is not currendy a requirement that nodes implement processing of ZIP Notifies. ZIP 
Notify processing will be required once the network management protocols for changing 
zones lists are specified. 

8-22 C H A P T E R 8 Zone Infonnation Protocol 



• Figure 8-5 ZIP Notify packet 

Flag bits: 

·a lid 7 -zone im 
6- use broa 
5 -only one 

dcast 
zone 

ZIP Notify 

~Ibyte(Sbi~l~ 

ZIP command = 7 

'I' I' I Flags 

--- -

- 0 -

- -

Old zone name length 

• • • Old zone name • • • 

New multicJst address length 

• ~ew multicast address • • • • • 

New zone name length 

• • • New zone name • • • 
I I 

Zones list changing 8·23 



Timer values 
Two parameter values associated with ZIP must be specified. The first is the value for the ZIP 
Query retransmission time. This value is equal to the send-RTMP timer, or 10 seconds. The second is 
the ZIP bringback time. The ZIP bringback time is defined as the minimum time required between 
bringing a network down and bringing it back up with a new zones list. Since it is desired that this 
value be a constant, independent of internet topology, the worst-case internet must be used in 
determining it. Since a network's zone name rarely changes, this value has been conservatively 
defined as 10 minutes. 

8-24 CHAP T E R 8 Zone Information Protocol 



Part IV Reliable Data Delivery 

P A R T I V D I S C U S S E S the protocols that add reliability to Apple Talk 
end-to-end data delivery. Part II described the protocols used to provide end
to-end data flow across an AppleTalk internet. Those protocols do not 
guarantee the delivery of the data; they merely provide a best-effort service. 
Two groups of protocols, corresponding to two different models of end-to
end interaction, are discussed in this part. 

The first group is based on a data transaction model. The key protocol of 
this group is the AppleTalk Transaction Protocol (ATP). ATP provides the 
request-response transaction paradigm on which the session-oriented 
services of the AppleTalk Session Protocol (ASP) and the Printer Access 
Protocol (PAP) are based. While ATP is concerned with independent 
transactions, ASP provides a sequence of transactions guaranteed to be 
delivered and executed in the order in which the transaction requests are sent. 
PAP provides a data read/write type of service built with underlying ATP 
transactions. PAP is the transport/session protocol used by printers of the 
Image Writer and LaserWriter families working in an AppleTalk environment. 

The second group is based on a more conventional model of reliable data 
flow-the data stream. This model provides a bidirectional reliable flow of 
data bytes between any two sockets of the internet. The AppleTalk Data 
Stream Protocol (ADSP) has been designed for this purpose. • 



Chapter 9 AppleTalk Transaction Protocol 

C 0 NTENTS 

Transactions I 9-3 
At-least-once (ALO) transactions I 9-5 
Exactly-once (XO) transactions I 9-6 

Multipacket responses I 9-9 

Transaction identifiers I 9-9 

ATP bitmap/sequence number I 9-10 

Responders with limited buffer space I 9-12 

ATP packet format I 9-13 

ATP interface I 9-16 
Sending a request I 9-17 
Opening a responding socket I 9-18 
Closing a responding socket I 9-19 
Receiving a request I 9-19 
Sending a response I 9-20 

ATP state model I 9-21 
ATP requester I 9-22 
ATP responder I 9-24 

Optional ATP interface calls I 9-26 
Releasing a RspCB I 9-26 
Releasing a TCB I 9-26 

Wraparound and generation ofTIDs I 9-27 

• 

9-1 



THE AP PLET ALK TRAN SACTI 0 N PROTO COL (ATP) 

satisfies the transport needs of a large variety of peripheral devices and the 

transaction needs for more general networking in an AppleTalk network 

system. ATP has been designed to be easy to implement so that maximum 

performance can be achieved. Furthermore, nodes with tight memory space 

restrictions will be able to support a sufficient subset of ATP. 

The fundamental purpose of reliable transport protocols is to provide a loss

free delivery of client packets from a source socket to a destination socket. 

Various features can be added to this basic service in order to obtain 

characteristics appropriate for specific needs. 

This chapter describes A TP and provides information about 

• transactions and multipacket responses 

• transaction bitmaps and sequence numbers 

• ATP packet format and service interface • 

9-2 C H APT E R 9 AppleTalk Transaction Protocol 



Transactions 

Often, a socket client must request the diem of another socket to perform a particular higher-level 
function and then to report the outcome. This interaction between a requester and a responder is 
called a transaction. 

The basic structure of a transaction in the context of a network is shown in Figure 9-1. The 
requester initiates the transaction by sending a Transaction Request (TReq) packet from the 
requester's socket to the responder's socket. The responder executes the request and returns a 
Transaction Response (TResp) packer reporting the transaction's outcome. 

A TP is based on the model that a transaction request is issued by a client in a requesting node 
to a client in a responding node. The client in the responding node is expected to service the request 
and generate a response. The clients are assumed to have some method of specifically identifying 
the data or the operation sought in the request (for example, a disk block or a request to reset a 
clock). 

The basic transaction process must be performed in the face of various error situations inherent 
in the loosely coupled nature of networks; these error situations include: 

• The TReq is lost in the network. 

• The TResp is lost or delayed in transit. 

• The responder becomes unreachable from the requester. 

Several different TReqs could be outstanding, and the requester must be able to distinguish 
between the responses received over the network. The ability to distinguish between these 
responses can be built by sending a transaction identifier (TID) with each request. A response 
must contain the same TID as the corresponding request. The TID, in a sense, unambiguously 
binds the request and response portions of a transaction, provided each transaction's TID value is 
unique. 

Transactions 9-3 



• Figure 9-1 Transaction terminology 

Transaaion Transaction 
requester responder 

(A TP diem) (A TP d iem) 

("~ .( "~ 
AW 

interface-- -- -- --- ---- - ---------- -- ----- --- ---- --- ----- --- ---------

v v 
ATP I(: -; ATP 

requesting ATP dialog re ponding 
end "' "" end 

Executes Sends transaction 
the request response 

I I 
Responding 

> Time end 

\ 
TResp(TIDl 

TReq(TID) 

I 
> Time 

lkquesting 
end 

Sends tr:lnsadion 
request 

9-4 CHAP TER 9 AppleTalk Transaction Protocol 



At-least-once (ALO) transactions 

In any of the three error situations previously listed, the requester will not receive the TResp and 
must conclude that the transaction was not completed. The requester must then activate a 
recovery procedure consisting of a timer and an automatic retry mechanism. If the timer expires in 
the requester and the response has not been received, the requester retransmits the TReq, as shown 
in Figure 9-2. This process is repeated until a response is received by the requester or until a 
maximum retry count is reached. If the retry count hits its maximum value, the transaction 
requester (the A TP client at the requester end) is notified that the responder is unreachable. 

This recovery mechanism is designed to ensure that the TReq is executed at least once; the 
transaction is called an at-least-once (ALO) transaction. Such a recovery mechanism is adequate 
if the request is idempotent (that is, if repeated execution of the request is the same as executing it 
once). An example of an idempotent transaction is asking a destination node to identify itself. 

If the ALO service is used, then ATP handles timeouts and retransmission of requests but does 
not automatically retransmit responses. In this case, it is up to the responding client to handle 
retransmission of responses to duplicate requests. 

• Figure 9-2 Automatic retry mechanism 

> Time 
Responding 

end 

\ \ 
TRcsp(TID) TResp(TID) 

TReq(TID) 

k 
TReq(TID) 

I I Lost 

Requesting 
> Time end 

Retry timeout 

Transactions 9-5 



Exactly-once (XO) transactions 

When, as previously described, an ATP request is retransmitted, the transaction could be executed 
more than once. If the request is not idempotent, serious damage could result from the execution 
of the duplicate transaction request. For nonidempotent requests, a transaction service that 
ensures the request's execution once and exactly once is essential; the transaction is called an 
exactly-once (XO) transaction. (Whether the ALO or the XO level of service is appropriate can be 
determined only by the transaction requester.) 

Figure 9-3 illustrates ATP's implementation of an XO transaction protocol. In order to 
implement an XO transaction protocol, the responder maintains a transactions list of all recently 
received transaction requests. Upon receiving a TReq, the responder searches through this list to 
determine whether the request has already been received (this is known as dupHcate transaction
request ffitering). A newly received request is inserted into the list and then executed; after 
which the corresponding response is generated by the responder and is sent to the transaction 
requester. At the same time, a copy of the response is attached to the transaction's entry in the 
transactions list. Upon receiving a duplicate request for which a response has already been sent, the 
responder retransmits the response without the intervention of the ATP client. If a duplicate 
request is received and a response has not been sent out yet (because the request is still being 
executed), then ATP ignores the duplicate request. 

Upon receiving a TResp, the requester should return a Transaction Release (TRel) packet to 
release the request from the responding ATP's transactions list. If this TRel gets lost, then the 
request would stay in the list permanently. To prevent this situation, the responder time stamps a 
request before inserting it in its list. The list is checked periodically by the responder, and those 
requests that have been in the list longer than the time specified by the release timer are eliminated. 

9-6 C HAP T E R 9 AppleTalk Transaction Protocol 



• Figure 9-3 Exactly-once (XO) transactions 

Responding 
end 

Tr:ms:1ction is inserted by ATI' into the 
transactions list and is delil'ered to the 
responding socket's client. 

TReq(TID) 

The client executes the request and 
then send~ the transaction response. 
ATP san~s this response in the 
tra n:.action~ list. 

\ 
TResp(TID) 

\ TReq(TIO) 

X 
Lost 

Tr.msauion request is not 
deli1·crcd to responder: inste:1d. 
tlw response is retransmitted out of 
trJns:ICtions list by ATP. 

I 

\ 
TResp(TID) 

TRei(TID) 

I I I 
Requesting 

end '--------------------------- -----.> Time 

Retry timeout -1 
This method of filtering duplicate requests by consulting a list of recently received transactions 

is quite effective in ensuring XO service in most environments. However, it does not guarantee XO 
service in all environments. If packets are guaranteed to arrive in the order in which they were sent 
(for example, on a single AppleTalk network), then this technique of filtering duplicate requests is 
completely effective. However, in an internet environment, packets may arrive at their destination 
in a different order from the one in which they were sent. This out-of-order delivery can occur 
because of the existence of multiple paths from source to destination and the various transmission 
delays on these paths. As a result, unusual situations can take place, such as the one shown in 
Figure 9-4, in which the original TResp was delayed long enough in the internet to provoke a 
retransmission of the request. 

Transactions 9-7 



• Figure 9-4 Duplicate delivery of exactly-once (XO) mode 

Responding 
end 

Requesting 
end 

TRel arrives hd on: 
reunnsmined request; 
rele-ases the u·JnsaCiion 
from transaCiions list. 

I 

Retrnnsmined request arrives. 
Cannot be filtered as duplicate. 
Pas.sed on to client. 

!.....---~\---:--,.~/->Time 

THcq 

I 
'------------------------~> Time 
1- Retry timeout - 1 

RequeSI is 
retransmitted. 

Response arrives. 
Request completed. 
TRel sent. 

Furthermore, if the TRel sent by the requester (upon receiving the delayed response) arrives 
before the retransmitted request, the responder (upon receiving the TRel) releases the request from 
the responder's transactions list. As a result, when the retransmitted request arrives at the 
responder, it cannot be filtered out as a duplicate. It should be noted that the probability of the 
occurrence of the situation of Figure 9-4 is quite low. Furthermore, ATP XO does ensure that if a 
duplicate request is somehow delivered by ATP to the responder (as in the above example), then the 
transaction has already been completed and the request can be ignored by the responder. Thus, 
clients requiring a higher level of guaranteed XO service can obtain it by augmenting the ATP 
mechanism with some form of simple sequence number checking, which allows a responder to 
detect delayed duplicate requests. An example of such a sequence number check is detailed in 
Chapter 10, "Printer Access Protocol." 

9-8 C H A P T E R 9 AppleTalk Transaction Protocol 



+ Note: ATP XO should be considered an optional part of ATP. Nodes that do not require XO 
service need not implement it. Developers should keep in mind, however, that higher-level 
protocols, such as the Printer Access Protocol (PAP) and the AppleTalk Session Protocol 
(ASP), may require ATP XO service. 

Multipacket responses 

This basic ATP model is adequate for most interactions. However, since the underlying network 
restricts the size of packets that can be exchanged, the TResp may not fit in a single packet. For this 
reason, the TReq and TResp are looked upon as messages (not packets). Although ATP restricts its 
TReqs to single packets, it allows the TResp message to be made up of several sequentially arranged 
packets. When the requesting node receives all the response packets (that is, the complete response 
message), the transaction is considered complete and the response is delivered as a single entity to 
the ATP client (the transaction requester). 

The maximum size (number of packets) of a TResp message is limited to eight packets. The 
maximum amount of data in an ATP packet (request or response) is 578 bytes. This limit is derived 
from the Datagram Delivery Protocol (DDP) maximum packet size of 586 bytes minus ATP's header 
size of 8 bytes. 

Transaction identifiers 

A transaction identifier (TID) is generated by the ATP requesting end and sent along with the TReq 
packet. An important design issue is the size of these IDs (16 bits for ATP). Their size is a function 
of the rate at which transactions are generated and of the maximum packet lifetime (MPL) of 
the complete network system. A basic problem exists because of the finite size of the TID, which 
will eventually wrap around. Once a TID value is reused, the danger exists that an old packet, with a 
previous instance of that TID, will arrive and be accepted as valid. Thus, the longer the MPL, the 
larger the TID must be. Similarly, if transactions are generated rapidly, then the TIDs must again be 
larger. 

For a single Apple Talk network, the time taken for exchanging a TReq and a TResp will generally 
be on the order of 1 millisecond or greater. Therefore, at most, 1000 transactions can take place per 
second. From this point of view, a 1-byte TID would ensure a TID wraparound time of about one
quarter of a second. 

Transaction identifiers 9-9 



With network interconnection through store-and-forward internet routers (IRs), however, the 
impact of an MPL on the order of 30 seconds makes a 1-byte TID inadequate. A 16-bit TID would 
increase the wraparound time to 1 minute and eliminate concerns about old retransmitted requests 
and responses being received as a result of TID wraparound. 

In "Wraparound and Generation of TIDs" later in this chapter, the issue of generating TIDs is 
reviewed to account for another subtle but important characteristic of ATP-namely, transactions 
with infinite retries. 

ATP bitmap/sequence number 
Every ATP packet includes a bitmap/sequence field in its header. This field is 8 bits wide. ATP 
handles lost or out-of-sequence response packets by using this field. The significance of this field 
depends on tl1e type of ATP packet (TReq, TResp, or TRei). 

In TReq packets, this field is known as the transaction bitmap. The requester indicates to 
the responder the number of buffers reserved for the TResp by setting a bit in the TReq packet's 
bitmap for each reserved buffer. The responder can examine the TReq packet's bitmap and 
determine the number of packets the requester is expecting to receive in the TResp message. 

In TResp packets, this field is known as the ATP sequence number. The value of this field in the 
TResp packet is an integer (in the range 0-7), indicating the sequential position of that response 
packet in the TResp message. The requester ATP can use this value to put the received response 
packet in the appropriate response buffer (even if the response packet is received out of sequence) 
for delivery to the transaction requester (the ATP client). In addition, the requester ATP clears a bit 
in its copy of the transaction bitmap to indicate that the corresponding response packet has been 
received. 

The actual TResp message may turn out to be smaller than was expected by the requester. 
Therefore, a provision is made in the response packet's header to signal an end of message (EOM). 
This EOM is set by the responder's ATP in the last response packet of the message. Upon receiving 
a response packet with the EOM indication, the requester must clear all bits corresponding to higher 
sequential positions in its copy of the transaction bitmap. 

+ Note: This EOM signal is internal to ATP; the responding client tells ATP to set it, but it 
is not delivered to the requesting client and should not be used for higher-level 
communications (for example, as an end-of-file indicator). 

9-10 CHAP TER 9 AppleTalk Transaction Protocol 



If the requester's retry timeout expires and the complete TResp has not yet been received 
(indicated by one or more bits still set to 1 in the requester's transaction bitmap), then a TReq is 
sent out again with the current value of the transaction bitmap and the same TID as the original 
request. As a result, only the missing TResp packets need to be sent again by the responder. 

The mechanism for requesting only the missing TResp packets is shown in Figure 9-5. In 
Figure 9-5, a requester issues a TReq indicating that it has reserved six buffers for the response; the 
request might be for six blocks of information from a disk device. The TReq packet would have in 
its ATP data part the pertinent information, such as what file and which six blocks of information 
are being requested. A TP builds the request packet and sets the least-significant 6 bits in the 
bitmap. When the responder receives this request packet, it examines the request's ATP data and 
bitmap and then determines the type and range of the request to be serviced. The six blocks are 
retrieved from the disk and passed to the A TP layer in the responding node. They are then sent back 
to the requesting node; each block is in a separate packet with its sequence number indicating the 
packet's sequential position in the response. 

• Figure 9-5 Multipacket response example 

Responding 
end 

Requesting 
end 

... > 
~--------~~--~----~-------•••--~--------------~----~ Time 

\ \ \ \ 
Tlkq 

(bitmap • 0011111 1) 

I 

TRc>p(O) TResp( 1 ) TResp( 2) • • • 

\ X Lost 

TReq 
(bitmap • 000001 00) 

I 

TRcsp(2) 

... > 
~----------------------------- • • • ---------------------------, Time 

-------- 1ktry timeout - - -------

ATP bitmap/sequence number 9-11 



Figure 9-5 shows a case in which the third response packet is lost in the network. Thus, the 
retry timeout will expire in the requester; this action causes a retransmission of the original request 
(transparently to the ATP requesting client) but with a bitmap reflecting only the missing third 
response packet. 

+ Note: Single packet request-response transactions are simply the Jesser case in which the 
TReq has 1 bit only set in its bitmap. If two nodes are expected to communicate in this 
single-packet manner, no extra packet overhead is added by the protocol. 

Responders with limited buffer space 
A potential difficulty, especially with XO transactions, is that a responder might not have enough 
buffer space to hold the entire TResp message until the end of the transaction (determined by the 
receipt of a TRel). 

For such responders, ATP provides a mechanism to reuse their buffers through a confirmation 
of response packet delivery. This reuse is achieved by piggy-backing in a response packet a request 
to send transaction status (STS). Upon receiving an STS response packet, the requester immediately 
sends out a TReq with the current bitmap, thus providing the responder a way to determine which 
response packets have been received. (In other words, the current bitmap indicates which response 
packets have not yet been received.) The responder can then use this bitmap to free buffers holding 
already-delivered response packets. 

Two client interface issues arise in connection with the send transaction status (STS) bit. 
The retransmitted TReq will be detected by ATP XO as a duplicate and hence will not be delivered to 
the responding client. Thus, ATP must provide some way of conveying the updated bitmap to the 
user without the delivery of a duplicate request. Also, in an internet, TReqs can be received out of 
order; if a duplicate TReq is received whose bitmap indicates that fewer responses have been 
received than indicated in a previous TReq, then the duplicate TReq should be ignored as a delayed 
duplicate and should not be delivered to the user. 

Figure 9-6 shows the use of STS in an example in which a responder with only two buffers 
services a request for a seven-packet response. TReq packets sent in response to an STS do not 
consume the retry count, but do reset the retry timeout. 

9-12 CHAPTER 9 AppleTalk Transaction Protocol 



• Figure 9-6 Use of STS 

in buffer A 

Responding I 
end (has on!)' 
two buffers) 

in buffer ll frees buffer ll frees bufl'ers A and ll 

in buffer A m buffer A 

I 
in buffer B 

I 
in buffer B 

•••=> Time 
~----~~--~------------~----~------------~--~-----··· 

\JI)·~ \J,.~, \J.,., 
TReq 

(bitmap= 0111 1111) 

I 

TResp(O) 

\ 
X 

Lost 

TRcq 
(bitmap= 01111101) 

I 
TReq 

(bitmap = 01111000) 

I 
etc. 

•••=> Time 
~-------------------------------------------------------··· Requesting 
end 

ATP packet format 
The format of an A TP packet is shown in Figure 9-7. An A TP packet consists of an 8-byte A TP 
header plus up to 578 ATP data bytes. The first byte of the ATP header is used for control 
information (Cl). The 2 high-order bits of the CI contain the packet's function code. These bits 
are encoded in the following way: 

• 01 =TReq 

• 10 =TResp 

• 11 =TRel 

The XO bit must be set in all TReq packets that pertain to the XO mode of operation of the 
protocol. The EOM bit is set in a TResp packet to signal that this packet is the last packet in the 
transaction's response message. The STS bit is set in TResp packets to force the requester to 
retransmit a TReq immediately. 

ATP packet format 9-13 



• Figure 9· 7 A TP packet fonnat 

DDP he;td~r 

ATP he;tdcr 

ATP data 

• • • 

-

-
-
-

• • • 

DDP type= j 

Control information 

Bitmap 
><.'quo.:nce numllcr 

no 

L:scr 
0)1C> 

(Q tO )i8 h)1CS) 

• • • 

-

-

-

-

• • • 

-

9-14 CHAPTER 9 AppleTalk Transaction Protocol 

Tiki timeout indic:uor 
(XO Tlkq's only> 



The remaining 3 bits of the CI should always be set to zero, except in the case of an XO TReq 
packet. In this case, these three bits are an indicator as to the value of the release timer to use for 
the transaction. These bits are encoded in the following way: 

• 000 = 30 second TRel timer 

• 001 = 1 minute TRel timer 

• 010 = 2 minute TRel timer 

• 011 = 4 minute TRel timer 

• 100 = 8 minute TRel timer 

Other values are reserved and should not be used. 

+ Note:AppleTalk Phase 1 nodes will not honor the TRel timer indicator field in XO TReq 
packets and will always use a TRel timer value of 30 seconds. 

The 8 bits immediately following the control field comprise the ATP bitmap or sequence 
number field. The packets comprising the TResp message are assigned sequence numbers 0-7. The 
sequence number (encoded as an integer) is sent in the ATP sequence number field of the 
corresponding response packet. 

In the case of a TReq packet, a bit of the bitmap is set to 1 for each expected response packet. 
The least-significant bit corresponds to the response packet with sequence number 0, up through 
the most-significant bit that corresponds to the response packet with sequence number 7. 

The third and fourth bytes of the ATP header contain the 16-bit TID. TIDs are generated by 
the ATP requester and are incremented from transaction to transaction as unsigned 16-bit integers 
(a 0 value is permitted). 

The last 4 bytes of the ATP header are not examined by ATP and are used to send client data. 
Strictly speaking, they should not be considered part of the ATP header. However, they can be used 
by an ATP client to build a simple header for a higher-level protocol. These bytes have been 
separated out to allow an implementation of A TP that handles an A TP request or response 
message's data in an assembled, contiguous form, without interposed higher-level headers. ATP 
client interfaces should build appropriate mechanisms for exchanging these 4 user bytes 
independent of the data. 

+ Note: The A TP user bytes contained in a TRel packet are not significant, and clients should 
not use them. 

ATP packet format 9-lS 



ATP interface 
The ATP interface, shown in Figure 9-1, is made up of five calls described later in this chapter. 

Developers can visualize the ATP package (an implementation of ATP) as consisting of two 
parts, one each at the requester and the responder ends. The calls to the ATP interface are discussed 
in the context of both the ATP requesting end and the ATP responding end of Figure 9-1. 

In the following description of the protocol, various details of the interface are not specified 
because they are implementation-dependent. l11e description is adequate for defining the 
characteristics of the ATP service provided to the next higher layer. 

The availabiliry of multiprocessing in the network node is not required. Descriptions of the 
various interface calls have been written in a generic fonn indicating parameters passed by the caller 
to the ATP implementation as well as results returned by the ATP implementation to the caller. The 
result codes and their interpretation depend on the specifics of the implementation of a call. If the 
call is issued synchronously, the caller is blocked until the call's operation has been completed or 
aborted. The returned parameters then become available when the caller is unblocked. In the case of 
asynchronous calls, a call completion mechanism is activated when the operation completes or 
aborts. Then the returned parameters become available through the completion routine mechanism. 

At least two kinds of interfaces are anticipated: 

• a packet-by-packet passing of response buffers to and from ATP 

• a response message (in other words, the message is in a contiguous buffer) 

The two kinds of interfaces are analogous to the familiar packet stream and byte stream interfaces 
available for data stream protocols. However, implementers are completely free to provide any rype 
of interface they consider appropriate. 

9-16 CHAP T E R 9 AppleTalk Transaction Protocol 



Sending a request 

The transaction requester (ATP client) issues a call to send a TReq. The transaction requester must 
supply several parameters with the call. These parameters include the address of the destination 
socket, the ATP data part, user bytes of the request packet, buffer space for the expected response 
packets, and information as to whether the XO mode of service is required. In addition, the 
transaction requester specifies the duration of the retry timeout to be used and the maximum 
number of retries. A provision must be made in the interface for the transaction requester to 
indicate infmite retries-in other words, retransmitting the request until a response is obtained. The 
transaction requester may be provided with the ability to specify the socket through which the 
request should be sent (Alternatively, ATP could pick the socket for the requester.) In addition, if 
the request is XO, the caller should pass an indicator as to the value to be used for the transaction 
release timer. 

Call parameters transaction mode (XO or ALO) 

transaction responder's address (network number, node ID, and socket number) 

ATP request packet's data part and its length 

Returned 
parameters 

A TP user bytes 

expected number of response packets 

buffer space for the TResp message 

retry timeout 

maximum number of retries 

TRel timeout indicator (XO requests only) 

socket through which to send the request (optional) 

result code: success; failure 

number of response packets received 

user bytes from responses 

A result code of failure is returned if ATP has exhausted all retries and a complete response has not 
been received. 

+ Note: No error is returned if the caller requests XO service and the responder does not 
support it; in this case, the request will be executed at least once. 

A TP interface 9-17 



A result code of success is returned whenever a complete response message has been received. A 
complete response is received if either of the following occurs: 

• All response packets originally requested have been received. 

• All response packets with sequence number 0 to an integer 11 have been received, and packet n 
had the EOM indication set. 

In either case, the actual number of response packets received is returned to the requesting client. A 
count of 0 should indicate that the other end did not respond at all. In the case of a count that is 
not 0, the client can examine the response buffers to determine which portions of the response 
message were actually received and, if appropriate, detect missing pieces for higher-level recovery. 

Opening a responding socket 

An ATP client uses this call to instruct ATP to open a socket (either statically or dynamically 
assigned) for receiving TReqs. If the socket is statically assigned, the client passes the socket 
number to ATP; otheiWise, the dynamically assigned socket number is returned to the caller. 

When opening this socket, the client is, in effect, opening a transaction listening socket. The call 
allows the socket to be set up so that requests are accepted only from a specified network address 
(provided in the call). This address can include a 0 in the network number, node ID, or socket 
number field to indicate that any value is acceptable for that field. 

Call parameters transaction listening socket number (if statically assigned) 

Returned 
parameters 

admissible transaction requester address (network number, node ID, and socket number) 

result code: success; failure 
local socket number (if dynamically assigned) 

+ Note: This call does not set up any buffers for the reception of TReqs. Clients must use the 
call for receiving a request to set up buffers. 

9-18 C H A P T E R 9 Apple Talk Transaction Protocol 



Closing a responding socket 

This call is used to close a previously opened responding socket. 

Call parameter transaction listening socket number 

Returned result code: success; failure 
parameter 

Receiving a request 

A transaction responder issues this call to set up the mechanism for reception of a TReq through an 
already-opened transaction responding socket. 

Call parameters local socket number on which to listen 

buffer for receiving the request 

Returned 
parameters 

result code: success; failure (buffer overflow) 

the received request's ATP data 

received request's user bytes 

TID 

transaction requester's address (network number, node ID, and socket number) 

bitmap 

XO indication 

A TP interface 9-19 



Sending a response 

When a transaction responder has finished servicing a transaction request, it issues this call in order 
to send out one or more response packets. A TP will send out each response buffer with the 
indicated TID and a sequence number indicating the position of the particular response packet in 
the response message. 

Call parameters local socket number (the responding socket) 

TID 

Returned 
parameter 

transaction requester's address (network number, node ID, and socket number) 

TResp message packets (A TP data part) 

transaction user bytes (up to eight sets of 4 bytes each) 

descriptors to determine the sequence numbers of the response packets 

EOM and STS control 

result code: success; failure 

9-20 C HAP T E R 9 Apple Talk Transaction Protocol 



ATP state model 

The following description is not a fonnal specification but an aid for protocol implementers. The 
appropriate actions to respond to all possible events are presented in this model. 

The ATP requester must maintain all information necessary for retransmitting an ATP request 
and for receiving its responses. This infonnation is referred to as the transaction control block 
(TCB). More specifically, the TCB should contain all the infonnation provided by the transaction 
requester in a call for sending a request, plus the TID, the request's bitmap, and a response-packets
received counter. A retry timer is associated with each transaction request and TCB. The retry timer 
is used to retransmit the request packet in order to recover from the loss of request or response 
packets. 

The ATP responder must maintain for each call a request control block (RqCB) for receiving a 
request issued by a client in that node. This block contains the infonnation provided by that call, 
including all data pertinent to the buffers and to the implementation-dependent client delivery 
mechanism. 

The response control block (RspCB) is needed only in nodes implementing the XO mode of 
operation. It holds the information required to filter duplicate requests and to retransmit packets in 
response to these duplicates. A release timer is associated with each RspCB. This timer is used to 
release the RspCB if the release packet sent by the requester is lost. The transactions list mentioned 
in "Exactly-Once (XO) Transactions" earlier in this chapter consists of these RspCBs. The release 
timer is set to the value indicated in the TReq packet. 

+ Note: The release timer is started as soon as a RspCB is set up (in other words, when the 
responder's socket receives the TReq). The timer is reset every time a TResp is sent by the 
responder. This implies that the responding client must send the first TResp within one TRel 
timer interval of the TReq's arrival and then send subsequent TResps at a maximum 
separation of one TRel timer from each other. Failure to do so can result in the RspCB being 
destroyed, making it possible for a duplicate request to be delivered to the responding client. 

ATP state model 9-21 



ATP requester 

The A TP requester maintains all information for retransmitting an A TP request and for receiving its 
responses. A list of events specific to the A TP requester follows and includes step-by-step actions 
for responding to the events. 

Event: Call to send a request issued by a transaction requester in the node 

1. Validate the following call parameters: 
o The number of response packets should be a maximum of eight. 
o The A TP request's data should be a maximum of 578 bytes long. 

If either parameter is invalid, then reject the call. 

2 Create a TCB: 
o Insert the call parameters into the TCB. 
o Clear the response-packets-received counter. 
o Insert the retry count into the TCB. 

3. Generate a TID: 
o This TID must be generated so that the packets of the new transaction will be correctly 

distinguished from those of other transactions (details of TID generation are discussed at 
the end of this chapter). 

o Save the TID in the TCB. 

4. Generate the bitmap for the TReq packet and save a copy of it in the TCB. 

5. Prepare the A TP header: 

o Insert the TID and the bitmap. 

o Set the function code bits to binary 01. 

o Only if XO mode is implemented: If the caller requested XO mode, then set the XO bit and 
the indicated value of the TRel timer bits. 

6. Call DDP to send the TReq packet (ignore any error returned by DDP). 

7. Start the request's retry timer. 

Event: Retry timer expires 

1. If retry count= 0, then: 

o Set the result code to failure. 

o Notify the transaction requester (the client in the node) of the outcome. 
o Remove the TCB. 

9-22 C H A P T E R 9 AppleTalk Transaction Protocol 



2 If retry count<> 0, then: 
o Decrement the retry count (if not infinite). 

o Change the bitmap in the ATP request's header to the current value in the TCB. 

o Call DDP to retransmit the request packet (ignore any errors returned by DDP). 

o Start the retry timer. 

Event: TResp packet received from DDP 

1. Use the packet's TID and source address to search for the TCB. 

2 If a matching TCB is not found, then ignore the packet and exit. 

3. If a matching TCB is found, then check the packet's sequence number against the TCB's 
bitmap to detennine whether this response packet is expected. The packet is expected if the bit 
corresponding to the response packet's sequence number is set in the TCB's bitmap. If the 
packet is not expected, then ignore it and exit. 

4. If the response packet is expected, then: 

o Clear the corresponding bit in the TCB bitmap. 

o Set up the response packet's ATP data and user bytes for delivery to the transaction 
requester. 

o Increment the response packet's counter in the TCB. 

5. If the packet's EOM bit is set, then clear all higher bits in the TCB bitmap. 

6. If the packet's STS bit is set, then: 

o Call DDP to send the TReq with the current TCB information. 

o Reset the retry timer for the request. 

7. If the TCB bitmap = 0 (a complete response has been received), then: 
o Cancel the retry timer. 

o Set the result code to success. 
o Only if XO mode is implemented: If the transaction is of XO mode (detennined by 

examining the TCB), then call DDP to send a TRel packet to the responder. 

o Notify the transaction requester. 
o Remove the TCB. 

ATP state model 9-23 



ATP responder 

The A TP responder must maintain a RqCB for each call to recieve a request issued by a client in that 
node. A list of events specific to the A TP responder follows and includes specific step-by-step 
actions for responding to the events. 

Event: Call to open a responding socket issued by a client 

1 If the caller specifies a statically assigned socket, then call DDP to open that socket; otherwise, 
call DDP to open a dynamically assigned socket 

2 If DDP returns with an error, then set the result code to equal the error. 

3. If DDP returns without an error, then: 
o Set the result code to success. 

o Save the socket number and the acceptable transaction requester address in an ATP 
responding sockets table. 

Event: Call issued to close a responding socket in the node 

1. Call DDP to close the socket. 

2 Release all RqCBs for that socket; for systems supporting the XO mode, release all RspCBs (and 
cancel all release timers), if any, associated with the socket. 

3. Delete the socket from the ATP responding sockets table. 

Event: Call to receive a request issued by a transaction responder 

1. If the specified local socket is not open, then return to the caller with an error. 

2 Create a RqCB and attach it to the socket. 

3. Save the call's parameters in the RqCB. 

Event: Call to send a response issued by a transaction responder 

1. If the local socket is invalid or if the response data length is invalid, then return to the caller 
with an error. 

2 Only if XO mode Is implemented: Search for a RspCB matching the call's local socket number, 
TID, and transaction requester address. If a match is found, attach a copy of the response to 
the RspCB (for potential retransmission in response to duplicate TReqs received subsequently), 
and restart the release timer. 

9-24 C H A P T E R 9 AppleTalk Transaction Protocol 



3. Send the response packets through DDP, setting the ATP header of each with the function 
code binary 10, the caller-supplied TID, the correct sequence number for the packet's sequential 
position in the response message, the EOM flag set in the last response packet, and the STS flag, 
if requested. Ignore any error returned by DDP. 

Event: Release timer expires, only if XO mode is implemented 

1. Remove the RspCB and release all associated data structures. 

Event· TReq packet received from DDP 

1. Only if XO mode is implemented: If the packet's XO bit is set and a matching RspCB exists (the 
packet's source, destination addresses, and TID are the same as those saved in the RspCB), then: 

o Retransmit all response packets requested in the transaction bitmap. 

o Restart the release timer. 

o Return the bitmap to the client if the STS bit was set during a previous response. 
0 Exit. 

2 If a RqCB does not exist for the local socket or if the packet's source address does not match 
the admissible requester address in the RqCB, then ignore the packet and exit. 

3. Only if XO mode is implemented: If the packet's XO bit is set, then create a RspCB, save the 
request's source and destination addresses, TID, and TRel timer indicator, and start its release 
timer. 

4. Notify the client about the arrival of the request and remove the corresponding RqCB. 

Event: TRel packet received from DDP, only if XO mode is implemented 

1. Search for a RspCB that matches the packet's TID, source address, and destination address; if 
not found, then ignore the release packet and exit. 

2 If a matching RspCB is found, then: 
o Remove the RspCB and release all associated data structures. 
o Cancel the RspCB's release timer. 

ATP state model 9-2S 



Optional ATP interface calls 

In certain cases, the clients of A TP might use contextual information to enhance their use of A TP 
through additional interface calls. Examples are calls to release a RspCB and to release a TCB. These 
calls are useful in implementing certain higher-level protocols but are optional in an ATP 
implementation. 

Releasing a RspCB 

The RspCB is used to hold information required to filter duplicate requests and to retransmit 
response packets for these duplicates. If the ATP client is aware that such filtering is no longer 
necessary, the client can indicate this to A TP through a call to release the RspCB. 

For example, two clients of ATP communicate with each other using the XO mode, and they 
decide to have, at most, one outstanding transaction at a time. Client A calls A TP to send a TReq 
packet to client B. Client B sends back the response. Client A, upon receiving the response, sends out 
a second request (but no release packet). The second request packet, upon being received by B, 
signals that the response to the previous request has been received by A. Now B could simply call 
its ATP responder and ask it to release the previous transaction's RspCB. Arguments to this call 
include the requester's address and the TID of the associated transaction. 

Another case in which the call would be useful is when the ATP client decides that it does not 
want to process the request at the current time but would rather receive a duplicate of that request 
at a later time. 

Releasing a TCB 

The TCB contains information for retransmitting an A TP request and for receiving its responses, 
including an associated timer. If the ATP client is aware that such retransmission is no longer 
necessary, it can indicate this through a call to release the TCB. 

9-26 C H A P T E R 9 Apple Talk Transaction Protocol 



For example, if client A needs to send data to client B, client A must first inform B of its 
intention and allow B to request the data. Client A can then send a TReq to B to signal "I want to 
write n bytes of data to you; please ask me for it on my socket number s." Instead of sending a 
TResp to this packet, B could just send a TReq to A's socket s asking for the data. The reception by 
A, on socket s, of B's request implies that A's original request has been received by B. Client A could 
call its ATP requester and ask it to eliminate the previous transaction's TCB. This call cou.ld also be 
used by the requesting-end client to cancel an outstanding ATP request at any time (for example, to 
abort an infinite retry request). 

Wraparound and generation of TIDs 
In "Transaction Identifiers" earlier in this chapter, TIDs were described as being of finite size. Since 
TIDs can wrap around, an old packet stored in some internet router may arrive late and be accepted 
as a valid packet in a later transaction using the same identifier value. Based on an MPL estimate of 
30 seconds, this problem can be avoided if the TIDs are 16 bits long (in which case, wraparound 
takes an estimated 1 minute or more). 

A related problem occurs when completion of a particular transaction takes more than 1 
minute. For example, a request that searches through an encyclopedia for all references to a 
particular piece of information might take several minutes. In this case, in the presence of other 
requests, the transaction ID could wrap around and another transaction could then be issued with 
the same TID, leading to an equivalent problem as described earlier. ATP does not prohibit 
operations of this sort. In fact, it is precisely because such transactions are possible that 
specification of the length of the ATP retry timer and maximum retry count is left up to ATP's 
transaction requesting client. 

Similarly, ATP allows the requester to issue an ATP transaction with maximum retry count set 
to infinite. In this case, A TP continues to retransmit the TReq until a reply is received. If a reply is 
not sent, then the transaction will be continually retransmitted. This retransmission leads to the 
same TID wraparound problem. 

A properly implemented A TP will function correctly in the face of these wraparound scenarios. 
Two key aspects of proper implementation are the use of TIDs to distinguish between 
transactions and the generation of TIDs. 

Wraparound and generation of TIDs 9-27 



When asked by a client to send a TReq, the A TP requesting end generates the TID for the 
request. At the same time, the ATP requesting end creates a TCB, and several pieces of information 
are saved in the TCB. These pieces of information include the number of the local socket through 
which the transaction is being sent, the complete internet address of the responding socket 
to which the transaction is being sent, and the TID. This information is saved to ensure a correct 
match of the response packets with the transaction. When the A TP requesting end receives a 
TResp, the requesting end identifies the corresponding request by looking for a TCB whose saved 
infonnation matches the response packet's TID and the packet's source and destination socket 
addresses. 

Therefore, TID wraparound by itself does not pose a problem unless it causes the simultaneous 
existence of two or more transactions (TCBs) with the same TID and the same requesting and 
responding socket addresses. This observation allows the specification of the following algorithm 
for generating TIDs: 

{ Algorithm used by ATP Requesting end to generate TID for a new transaction 

new_TID := last_used_TID; 

Not_In_Use := TRUE; 
REPEAT 

new_TID := (new_TID + 1) modulo 2Al6; 

Search all TCBs on the local requesting socket, and if any one of these 

has (new_TID = TCB' s TID) then set Not_In_Use := FALSE; 
UNTIL Not_In_Use; 

{ At this point new_TID has the newly generated TID } 
last_used_TID :== new_TID; 

+ Note: This algorithm ignores the TCB's destination socket address (that is, the algorithm 
does not further distinguish on the basis of the destination address for the request). This 
simplification of the algorithm does not reduce its effectiveness in preventing the 
wraparound problem. 

9-28 CHAPTER 9 Apple Talk Transaction Protocol 



Chapter 10 Printer Access Protocol 

CONTENTS 

PAP services I 10-4 

The protocol I 10·5 
Connection establishment phase I 1 0· 7 
Data transfer phase I 10-9 
Duplicate filtration I 10-11 
Connection termination phase I 10-11 
Status gathering I 10-12 

PAP packet formats I 10-12 

PAP function and result values I 10-16 

PAP client interface I 10-16 
PAPOpencall I 10-17 
PAPClosecall I 10-17 
PAPRead call I 10-18 
PAPWrite call I 10-18 
PAPStatus call I 10-19 
SLinit call I 10-19 
GetNextjob call I 10-20 
SLC!ose call I 10-20 
PAPRegName call I 10-20 
PAPRemName call I 10-21 
HeresStatus call I 10-21 

PAP specifications for the Apple LaserWriter printer I 10-21 

• 

10-1 



THE APPLETALK PRINTER ACCESS PROTOCOL (PAP) 

is a session-level protocol that enables communication between workstations 

and servers. It is a connection-oriented protocol, which handles 

• connection setup 

• connection maintenance 

• connection closure 

• data transfer over the connection 

PAP allows multiple connections at both the workstation and server ends. 

PAP envisions a server node as containing one or more processes that are 

accessible to workstations through PAP. In this chapter, these processes are 

referred to as servers. A server makes itself visible over the network by 

opening a session listening socket (SLS) on which it registers its name. • 

10-2 CHAPTER 10 Printer Access Protocol 



The use of the word printer in the name of this protocol is purely historical. The protocol was 
originally designed for the specific purpose of communication with print servers, such as the 
Apple LaserWriter and Image Writer printers. However, the protocol has no special features for 
printing and can be used by a wide variety of other kinds of servers. Figure 10-1 illustrates the 
protocol architecture used for communication between a user's computer (workstation) and a print 
server in an AppleTalk network. PAP is a client of the Apple Talk Transaction Protocol (ATP) and the 
Name Binding Protocol (NBP). Both of these protocols use the Datagram Delivery Protocol (DDP). 
PAP is an asymmetric protocol; the PAP code in the workstation is different from the PAP code in 
the printer. 

The commands and data sent through the PAP connection are printer-dependent. For the 
LaserWriter printer, the dialog is in PostScript. 

• Figure 10-1 Printing architecture 

Workstation 

( Application Printer 

I 
Printing Manager ( Printer software 

I I 
PAP (workstation side) PAP (seiVer side) 

NBP I ATP NBP I ATP 

DDP DDP 

Data link Data link 

~ ~ 
Network 

Printer Access Protocol 10-3 



PAP services 

In order to establish a connection with a server, a PAP client in a workstation issues a PAPOpen call 
that results in the initiation of a connection establishment dialog with a server. The client specifies 
the server by its complete name; in order to initiate a dialog with the server, PAP calls NBP to obtain 
the address of the server's session listening socket (SLS). PAP also allows implementations in 
which the workstation's PAP client performs the NBP lookup directly (or obtains the server's 
address through other means) and then makes the PAPOpen call with the address of the server's 
SIS. 

Once a connection has been opened to the server, the PAP client at either end of the connection 
can receive data from the other end (by issuing P APRead calls) and can write data to the other end 
(through PAPWrite calls). PAP uses ATP transactions (in exactly-once mode) to transfer the data. 
See Chapter 9, "AppleTalk Transaction Protocol," for further details on ATP transactions. 

When the data transfer has been completed, the PAP client on either end issues a PAPClose call. 
The PAP client in a workstation can, at any time, issue a PAPStatus call to find out the status 

of a server. PAP does not restrict the syntactic or semantic structure of the returned status 
information beyond specifying that it is a string of at most 255 bytes preceded by a length byte. 
The PAPStatus call can be issued even before a connection has been established with the server. 

Since PAP is not a symmetric protocol, several PAP calls are used only in server nodes. The first 
of these is the SLinit call. This call is issued by a server when it starts up and after it has completed 
its initialization. The SLinit call opens an SLS (an ATP responding socket) in the server node and 
causes the server's name to be registered on that socket through NBP. Multiple SLinit calls can be 
issued to the PAP code in the same server node; each SLinit call opens a new SIS and registers the 
server name provided on that socket. 

A second call, the GetNextjob call, is used by the PAP client in the server to indicate to the PAP 
connection arbitration code that this client is ready to accept a new connection through a particular 
SLS opened via a prior SLinit call. The GetNextjob call primes the connection arbitration code to 
accept another connection establishment request from a workstation. 

A server client can issue an SLClose call in order to close the SIS and to shut down any active 
connections on that socket. 

A PAP client in the server node can use two calls, PAPRegName and PAPRemName, to register 
and remove (deregister), respectively, a server name for a specified SLS. For instance, PAPRegName 
can be used to assign more than one name to the server on a particular SLS. These calls could also be 
used at server setup time to change the name associated with a particular SLS. 

10-4 CHAPTER 10 Printer Access Protocol 



PAP must be able to handle cases of half-open connections, which occur when one of the 
connection ends goes down or otherwise terminates the connection without informing the other 
end. Half-open connections must be detected by PAP and tom down. For this purpose, PAP 
maintains a connection timer at each end. In addition, each end of an open connection must send 
tickling packets to the other end on a periodic basis (determined by the tickle timer). The purpose 
of these packets is to inform the other end that the sender's end is open and "alive." The receipt of 
any packet on a connection resets the connection timer at the receiving end. If the connection 
timer expires without a packet having been received, then PAP determines that the other end is 
unreachable, and the connection end is tom down. 

The protocol 
The basic model of a PAP-based server is that it processes a specific maximum number of jobs from 
workstations at the same time. The number of jobs that a server can process at once depends on 
the server's implementation and is not defined by PAP. While the server is processing this maximum 
number of jobs, it does not accept requests for initiating additional jobs; instead, it informs 
requesting workstations that it is busy. While a server is processing a job, a connection is said to be 
open between the workstation being served and the server. A one-to-one correspondence exists 
between the number of open connections and the number of jobs being processed by the server. 
When the server completes a particular job, the corresponding connection is closed, and the server 
can notify its PAP that it is able to accept another connection from a workstation. 

When a server process is first started, it goes through its internal initialization and then issues 
an SLinit call to its PAP code. This causes PAP to call ATP to open an ATP responding socket, which 
is the SLS for that servet. Then, PAP calls NBP to register the server's name and to bind it to the SLS. 
Next, PAP issues an A TP call to receive a request on this socket, so that the server can respond to 
PAPOpen or PAPStatu~ request packets. However, the PAP client may still not be ready to accept a 
job. Therefore, PAP will still refuse connection-opening requests through this SLS. In this case, the 
server is said to be in a blocked state. Figure 10-2 shows the server states. 

After the SLinit call is completed, the server process issues a series of GetNextJob calls to 
indicate that it is ready to accept jobs. One such call is issued for each job that the server can accept 
at the time. The server is now in the waiting state and is ready to open connections and accept jobs. 

As previously stated, PAP can support multiple servers within one node. Each of these servers is 
made available on a unique SLS, which is set up through a corresponding SLinit call. 

The protocol 10-5 



• Figure 10-2 Server states 

Server issues a 
GetNextjob 

call , _________________ , 

Waiting 

,' 

: OpenConn ~ 
: request arrives : 

~-~--- ~~~~~~ ~~e- ~:S----,', 

Start 

,.------- __ l_ __ --- ---
1 

: Server issues an 
: SL!nit call 
\ 

Blocked 

:' End of arbitrJtion ', 
: period with no pending : 

',, ~ ___ ?:~~C_:XtJ~>~) -(~~: __ -,) 

Arbitration (ARB) 

No pending 
GctNextjob 

calls 

Cnblocked 

,-------- ---------, 
:' End of arbitration period '-, 
: with pending : 

/, ~ ___ ~~~e~x~~~ -~~: __ _ ,) 

PAP uses NBP to name (in a server) and find (from a workstation) a server's SLS. Apart from 
these operations, all packets exchanged by PAP are sent through A TP. Each such PAP packet 
contains a 1-byte quantity in the A TP user bytes that indicates the packet's PAP function. 

10-6 C H A P T E R 10 Printer Access Protocol 



Connection establishment phase 

A connection is a logical relationship between two PAP entities, one in the workstation node and 
the other in the server node. Data can be exchanged by two PAP clients only after a connection has 
been established (opened). Since PAP uses ATP to transfer data, the two communicating PAPs 
must accomplish the following during the connection establishment phase: 

• discover the address of the A TP responding socket for the other connection end 

• determine the maximum amount of data that can be transferred in an ATP transaction, based 
on the buffer space available at the data receiving end (This maximum size, called the flow 
quantum, is sent by each end to the other end during the connection establishment phase.) 

A PAP client in a workstation initiates connection establishment by issuing a PAPOpen call. Such a 
client provides the complete name of the server as a call parameter. The PAP code obtains the 
internet socket address of the server's SLS by issuing an NBP Lookup call. The PAP code then opens 
an ATP responding socket (Rw), generates an 8-bit PAP connection identifier (ConniD), and 
then sends a Transaction Request (TReq), with PAP function OpenConn, to the server's SLS. This 
packet contains the ConniD, the address of socket Rw, the flow quantum for the workstation, 
and a wait period used by the server for arbitration. All packets related to this connection that are 
sent by either end must contain this ConniD. PAP should ignore packets with different ConniDs 
that are received through sockets associated wid1 d1e connection. The workstation must generate 
the ConniDs in such a way as to minimize the likelihood that any two connections opened by the 
workstation will have the same ConniD. (This precaution is especially necessary for connections 
that are established at about the same time.) 

When an A TP TReq of PAP function Open Conn is received at the server's SLS, PAP executes a 
connection-acceptance algorithm as shown in Figure 10-2. If the server is blocked (that is, if there 
are no outstanding GetNex'tjob calls), then the server's PAP responds to the OpenConn transaction 
wid1 an ATP response of PAP function OpenConnReply, indicating "server busy." Included in the 
OpenConnReply is a status string that is passed back to the workstation client and that can contain 
further details about the busy state. 

If, however, the server is in the waiting state (that is, if one or more GetNextjob calls are 
pending), then upon receiving an OpenConn (the first one since the server went into ilie waiting 
state), the server's PAP goes into an arbitration (ARB) state for a fixed lengili of time (2 seconds). 
In the ARB state, PAP receives all incoming OpenConn requests and tries to find the ones 
corresponding to workstations that have been waiting the longest time for a connection. The ARB 
interval allows the server to implement a fairness scheme that accepts requests generated by the 
workstations that have been waiting the longest before accepting those from more recent 
entrants to the contest. 

The protocol 10-7 



The length of time in seconds that a workstation has been waiting for a connection (called the 
WaitTime) is sent with the OpenConn request. When the first OpenConn request since the server 
went into the waiting state is received, the WaitTime value from that request is loaded into a 
variable associated with one of the pending GetNextjob calls. This GetNextjob call is marked as 
having a WaitTime associated with it If, during the ARB interval, a new OpenConn request is 
received, the server examines all pending GetNextjob calls to see if any one of them does not have a 
WaitTime associated with it. If such a free, pending GetNextjob call is found, then the WaitTime of 
the just-received OpenConn request is saved with this GetNextjob. If no free GetNextjob call is 
found among the pending calls, then PAP compares the just-received OpenConn request's WaitTime 
with the values saved in the pending GetNextjobs. If the WaitTime value for the just-received 
OpenConn request is less than all of the WaitTime values for the pending GetNextjob calls, then 
PAP responds to the just-received request with an OpenConnReply that indicates "seiVer busy." If, 
on the other hand, the WaitTime is greater than one or more of the WaitTimes in GetNextjob, PAP 
associates the new request with the GetNextjob that has the smallest saved WaitTime, replacing 
that WaitTime with the one from the new request. 

At the end of the ARB inteiVal, the seiVer's PAP opens ATP responding socket Rs for each 
connection request still associated with a GetNextjob and sends ATP responses of PAP function 
OpenConnReply indicating "connection accepted" to the selected {but still pending) ATP requests. 
These ATP responses carry the ConniD received in the OpenConn request, the address of socket Rs, 
and the flow quantum of the seiVer end (which is set by the SLinit call that is issued when the 
server is initialized). The corresponding PAP connections are now open, and the jobs from the 
corresponding workstations can be processed. 

At the end of the ARB inteiVal, if no GetNextjobs are pending, then the seiVer enters the 
blocked state; if there are pending GetNextjobs, then the server enters the unblocked state. In the 
blocked state, the seiVer cannot accept incoming OpenConn requests. However, in the unblocked 
state there are pending GetNextjob calls, and the server can accept additional connections (jobs). 

Note that if the seiVer is in the unbloc~ed state, it has just been through the ARB state and has 
already opened connections to all workstations that have been waiting for a connection. Therefore, 
when the seiVer is in the unblocked state and receives an OpenConn request, it need not enter the 
ARB state; the server accepts incoming OpenConn requests and sets up connections immediately. 
As soon as the seiVer runs out of pending GetNextjob calls, it enters the blocked state. Then when 
a GetNextjo~ call is issued, the seiVer again enters the waiting state. 

10-8 CHAP T E R 10 Printer Access Protocol 



If the workstation's PAP receives an OpenConnReply indicating that the server is busy (that is, 
in the blocked state), then PAP waits a specified time period (approximately 2 seconds) and issues 
another connection-opening transaction. Each time the workstation end repeats this process, it 
updates its WaitTime value. The current value of this WaitTime is sent with each Open Conn packet. 
Each of these OpenConn A TP transaction requests is issued with a retry count of 5 and a retry 
interval of 2 seconds. The workstation's PAP should provide some way for its client to abort a 
PAPOpen call but should otherwise keep trying until the connection is opened. 

Data transfer phase 

The opening of a connection initiates PAP's data transfer phase. In this phase, PAP performs the 
following two functions: 

• It transfers data over the connection. 

• It detects and tears down half-open connections. 

PAP maintains a connection timer (of 2-minute duration) at each end of a connection. This timer, 
used in detecting half-open connections, is started as soon as the connection is opened. Whenever a 
packet of any sort is received from the other end of the connection, the timer is reset. If the timer 
expires (if, for example, no packets are received from the other end during the 2-minute time period), 
the connection is tom down. This indicates to PAP that the other end has gone down, has closed 
its connection, or has become otherwise unreachable (if, for example, an internet has become 
partitioned). 

For the timer mechanism to work properly, it is important that, although no client data is being 
transferred on the connection, PAP exchange control packets to signal that the connection ends are 
alive. This process is referred to as tickling, and the control packets are called tickling packets. For 
this purpose, as soon as a connection is established, each end starts an ATP transaction with PAP 
function Tickle. This transaction, known as a Tickle transaction, has a retry count of infmite and a 
retry time interval equal to half the connection timeout period. Tickle transactions must be at
least-once (ALO) ATP transactions. Tickle packets are sent to the other end's ATP responding 
socket (that is, the Rs or Rw socket). The receiver of such a TReq packet must reset its connection 
timer but must not send a transaction response. Tickle transactions are canceled by each end when 
the connection is closed. 

The protocol 10-9 



The data transfer model used by PAP is read-driven. When the PAP client at either end of the 
connection wants to read data from the other end, it issues a P APRead call. This call provides PAP 
with a read buffer into which the data is read; the size of the read buffer must be equal to the end's 
flow quantum. In response to the PAPRead call, PAP calls ATP to send an ATP transaction request 
with PAP function SendData and with an ATP bitmap that reflects the size of the call's read buffer. 
This transaction is issued with a retry count of infinite and a retry time interval of 15 seconds. The 
call is sent to the other end's ATP responding socket. To prevent duplicate delivery of data to PAP's 
clients, all ATP data transfer transactions use ATP's exactly-once (XO) mode and a sequence 
number. This technique of preventing duplicate deliYery is described in detail in the following 
section, "Duplicate Filtration." 

The receipt of an ATP TReq packet with PAP function SendData implies that a pending 
P APRead is at the other end. This send credit can be remembered by the PAP code and used to 
service any pending or future PAPWrite calls issued by its client. 

When a PAP client (at either end) issues a P APWrite call, PAP examines its internal data 
structures to see if it has received a send credit. If it has, then the client takes the data from the 
PAPWrite call and sends this data in ATP response packets with at most 512 bytes of ATP data in 
each. The packets are of PAP function Data, and have the end-of-message (EOM) bit set in the last 
one. If no send credit has been received, then PAP queues the PAPWrite call and awaits a send credit 
from the other end. (That is, it awaits the receipt of an A TP request of PAP function SendData 
from the other end.) The amount of data to be sent in a PAPWrite call cannot exceed the flow 
quantum of the other end; PAPWrite calls that violate this restriction return immediately with an 
error message. 

When a PAP client issues the last PAPWrite call for a particular job, it should ask PAP to send an 
end-of-flle (EOF) indication with that call's data. The EOF indication is delivered to the PAP client at 
the other end as part of the received information for a P APRead call; this indication notifies the 
client that the other end is finished sending data on this connection. In order to specify the end of 
data, the client can issue a PAPWrite call with no data to be sent; in this case, just an EOF indication 
is sent to the client at the other end. 

10-10 C HAP T E R 10 Printer Access Protocol 



Duplicate ftltration 

As described in Chapter 9, "AppleTalk Transaction Protocol," in the case of intemets, ATP XO mode 
does not guarantee XO delivery of requests-it guarantees only that if a duplicate request is 
delivered to an ATP client, the request can be ignored because all responses to it have been 
successfully received by the other side. PAP uses a sequence number in SendData requests to enable 
it to detect these duplicates and to ignore them. Furthermore, since PAP maintains only one 
outstanding read request at a time, duplicate filtration can be accomplished in a fairly simple 
manner. 

All SendData requests contain a sequence number in the last 2 ATP user bytes. The sequence 
number starts at 1 with the first such request and takes on successive values up to 65,535 before 
wrapping around to 1 again. The value 0 is reserved to mean unsequenced. Any SendData request 
received with a sequence number of 0 should be accepted by PAP without checking for duplication. 
This use of 0 is for compatibility with previous versions of PAP. If the sequence number is not 0, 
PAP should verify that the sequence number is equal to the highest sequence number of the last 
SendData request received. If this is not the case, the packet should be ignored as a duplicate of a 
previous, already-completed request. Each side of the PAP connection must maintain independently 
both a sequence number for its SendData requests and a sequence number for the last SendData 
request accepted from the other end. 

Connection termination phase 

When the PAP client at either end issues a PAPC!ose call, PAP closes d1e connection. Typically, after 
the workstation's PAP client has completed sending all data to the server and has received an EOF in 
return, the client will issue the PAPC!ose call. An ATP transaction request is sent to the other end 
wid1 PAP function CloseConn. An end receiving a CloseConn request should immediately send back, 
as a courtesy, an ATP transaction response of PAP function CloseConnReply. To close a 
connection's end, it is important to cancel any pending ATP transactions issued by that end, 
including Tickle transactions. An end receiving a CloseConn packet must cancel its pending ATP 
transactions for that connection as soon as it is able to do so. 

The protocol 10-11 



At the server end, the receipt of the CloseConn causes the connection to be tom down, but the 
server may continue to process data for the ongoing job. When this data has been processed, the 
PAP diem in the server can then issue a GetNextjob call in order to accept another job. In fact, the 
server can issue a GetNextjob call at any time in order to signal to its PAP code that it is willing to 
accept another job. These GetNextjob calls are queued up by PAP and used to accept incoming 
OpenConn requests as discussed in "Connection Establishment Phase" earlier in this chapter. 

A server can also close all open connections by issuing an SLClose call, which deregisters all 
names and closes the server's SLS. 

Status gathering 

PAP supports status querying of the server through the PAPStatus call. A workstation client need 
not open a connection with the server in order to issue this call; this call can be issued at any time. 
The PAPStatus call results in a SendStatus request packet being sent to the server specified in the 
call (the server can be specified by name, in which case, PAP calls NBP to determine the server's 
address). The request is sent to the server's SLS. The server's PAP responds with a Status reply 
packet that contains a Pascal-format string (length byte first) specifying the server's status. This 
response is made without delivering the request to the PAP client in the server. The PAP client in 
the server must have previously provided the status string to PAP through an SL!nit or HeresStatus 
call. The HeresStatus call, details of which are implementation-dependent, should be made by the 
PAP server client whenever the server's status changes. This status string is also returned by PAP in 
OpenConnReply packets. 

PAP packet formats 

As previously stated, PAP uses both NBP and ATP. NBP is used by the server's PAP to register or 
remove a name on the server's SLS. A workstation's PAP uses NBP to determine the address of a 
server's SLS from the server's name. 

Packets sent by ATP in response to PAP calls include a PAP header. The header is built by using 
the user bytes of the ATP header and, in some cases, by sending 4 or more bytes of the PAP header 
in the data part of the ATP packet. 

10-12 CHAPTER 10 Printer Access Protocol 



The ftrst ATP user byte of the PAP header is the Conn!D (except in SendStatus requests and 
Status replies, whose first byte must be 0). The second ATP user byte is the PAP function of the 
packet (see the following section for a list of the PAP function values). For packets of PAP 
function equal to Data, the third ATP user byte is the EOF indication (a number other than 0 
indicates EOF). For packets of function SendData, the third and fourth bytes are the sequence 
number (high byte first). OpenConn and OpenConnReply packets contain, as part of the ATP data, 
the ATP responding socket numbers and the flow quantum to be used for the connection. The 
OpenConn request additionally contains the WaitTirne; the OpenConn reply contains the open result 
and the status string. Status replies contain just the status string. 

Figures 10-3 through 10-6 illustrate the PAP headers for the various types of PAP packets. For 
simplicity, the DDP and data-link headers are not included. 

• Figure 10-3 PAP OpenConn and OpenConnReply packet formats 

ATP 
header 

ATP 
user 

b}1CS 

ATP 
data 

OpenConn 
(TReq) 

OpenConnRcply 
(TRcsp) 

~I byte (8 bits)~ ~I byte (8 bits)-~ 

• • • 

-

Conn!D 

Function z OpenConn 

0 

0 

ATP responding 
~ocket number 

Flow quantum 

WaitTime 

I I I 
• • • • • • 

- 1-

• • • 
I 

ConniD 

• • • 

Function • OpenConnReply 

0 

0 

A TP responding 
socket number 

Flow quantum 

Result 

Status string 

-

• • • 

PAP packet formats 10-13 



• Figure 10-4 PAP SendData, Data, and Tickle packet formats 

ScndData (TReq) Data (TResp) Tickle (TReq) 

~-lbyte(8bits)~ ~lbytc(8hiL')I ~-tbyte (8 bits)~ 

I I I I I 

ATP 
header 

:\TP 
user 

b)1eS 

• • • 

r-

• • • • • • • • • 

ConnlD ConnlD 

Function = SendDat:1 Function • Data 

PAP sequence 
number 

EOF 
-

0 

~~::{ : 
t._l _____ ... 

Dat3 • 
(0 to 512 bytes) • • 

• Figure 10-5 PAP CloseConn and CloseConnReply packet formats 

ATP 
header 

ATP 
user 

bytes 

CloseConn (TReq) CloseConnReply (TResp) 

~-1 byte (8 bits)~ I ' b)1C (8 bits)~ 

I I I I 
• • • 

ConniD 

Function • CloseConn 

0 

0 

• • • • • • 

ConnlD 

Function • CloseConnlteply 

0 

0 

• • • 

10-14 C H A P T E R 10 Printer Access Protocol 

• • • 

ConnlD 

Function • Tickle 

0 

0 

• • • 



• Figure 10-6 PAP SendStatus and Status packet formats 

ATI' 
header 

ATP 
user 
b)~es 

SendStatus (TReq) Status (TResp) 

~~ b~e (8 bits)~ ~I byte (8 bits)~ 

• • • 

0 

Function = SendStatus 

0 

0 

ATP 
data -

I I 
• • • • • • 

/ 

• • • 

0 

Function • Status 

0 

0 

<unused> 

<unused> 

<unused> 

<unused> 

Status string 

• • • 

• • • 

PAP packet formats 10-1S 



PAP function and result values 

The permissible PAP function field values are as follows: 

Function Value 

Open Conn 1 
OpenConnReply 2 
SendData 3 
Data 4 
Tickle 5 
CloseConn 6 
CloseConnReply 7 
SendStatus 8 
Status 9 

The values that can be returned in the result code field of a OpenConnReply are as follows: 

Result 

NoError 
PrinterBusy 

Value 

0 
$FFFF 

PAP client interface 

Meaning 

No error-<onnection opened 
Printer busy 

This section describes the PAP calls. It lists the parameters that the client must include and 
provides the significant interface-level aspects of each call. Some of these calls are available only in 
workstations, others only in servers, and others in both workstations and servers. The call 
definitions specify which devices can use the calls. 

10-16 CHAPTER 10 Printer Access Protocol 



PAPOpen call 

A PAP client in a workstation issues the PAPOpen call in order to initiate a connection-opening 
dialog with the specified server. 

€all parameters specification of the server to which a connection should be opened (either the 
server's NBP name or the server's SLS address) 

Returned 
parameters 

flow quantum (the number of 512-byte buffers available for each read) 

buffer in which the open status string is to be returned 

result code 

connection refnum (a local number assigned by the workstation's PAP to 
uniquely identify the connection within the workstation) 

The open status string should be returned by PAP each time it is received in an OpenConnReply and 
not just upon call completion. The client must use the connection reference number (refnum) in 

order to refer to this connection in subsequent calls in the workstation. 

P APClose call 

A PAP client in a workstation or a server must issue the PAPClose call in order to close the 
connection specified by the connection refnum. 

Call parameter connection refnum 

Returned result code 
parameter 

PAP client interface 10-17 



PAPRead call 

The PAP client at either end issues a PAPRead call in order to read data from the other end over the connection 
specified by the connection refnum. 

Call parameters connection refnum 

Returned 
parameters 

buffer in which to read the data 

result code 

size of the data read 

EOF indication 

+ Note: PAP assumes that the buffer into which the reply data is to be read is no smaller than 
the flow quantum specified in the P APOpen or the SUnit call. 

PAPWrite call 

The PAP client at either end issues a PAPWrite call in order to write data to the other end over the connection 
specified by the connection refnum. 

Call parameters connection refnum 

Returned 
parameter 

buffer with the data to be written 

size of the data to be written 

EOF indication 

result code 

If the data size is larger than the flow quantum of the other end, the call returns with an error. 

10-18 C HAP T E R 10 Printer Access Protocol 



PAPStatus call 

A PAP client in the workstation issues a PAPStatus call in order to detennine the current status of 
the server. This call can be used at any time, regardless of whether a connection has been opened by 
the PAP client to the server. Upon completion, this call returns a string that contains the status 
message sent by the server. 

Call parameters specific:ations of the server from which status is being requested (either the 
server's NBP name or the server's SLS address) 

Returned 
parameter 

SLinit call 

buffer in which the status string is to be returned 

result code 

The PAP client in the server issues an SL!nit call in order to open an SLS and to register the server's 
name on this socket. The client can also include an initial status string in this call. 

Call parameters NBP name of the server 

Returned 
parameters 

flow quantum for all connections to the server (the number of 512-byte 
buffers available for reads) 

status string 

result code 

server refnum 

The server refnum must be used by the server when issuing subsequent GetNextjob calls in order 
to identify the SLS for which the GetNextjob call is being made. The PAP code in the server node 
must return a unique server refnum for each SL!nit call. 

PAP client interface 10-19 



GetNextJob call 

The PAP client in the server issues a GetNext]ob call whenever it is ready to accept a new job 
through the SLS specified by a server refnum. 

Call parameter server refnum 

Returned result code 

parameters connection refnum (a number assigned by PAP to uniquely identify the 
connection) 

SLClose call 

The PAP client in the server issues an SLClose call in order to close down a server process. 

Call parameter server refnum 

Returned result code 
parameter 

PAPRegName call 

The PAPRegName call is used only in server nodes. This call registers a name (as an NBP entity name 
for the server) on the SLS corresponding to the specified server refnum. 

Call parameters server refnum 

Returned 
parameter 

server name to register 

result code 

10-20 CHAPTER 10 Printer Access Protocol 



PAPRemName call 

The PAPRemName call is used only in server nodes. This call deregisters a name from the SLS 
corresponding to the specified server refnum. 

Call parameters server refnum 

Returned 
parameter 

server name to deregister 

result code 

HeresStatus call 

The PAP client in the server issues a HeresStarus call in order to provide PAP with a new status 
string. This call should be issued any time the status string has changed. 

Call parameters server refnum 

status string 

Returned 
parameter 

result code 

PAP specifications for the Apple LaserWriter printer 
The following specifications detail the PAP-client implementation on the Apple LaserWriter printer. 

• The flow quantum used by the LaserWriter is 8. 

• The LaserWriter printer can handle only one job at a time, so it never has more than one 
GetNextjob outstanding. Essentially, the unblocked state does not exist on the LaserWriter; the 
LaserWriter printer can be in only a waiting, arbitration, or blocked state. 

PAP specifications for the Apple LaserWriter printer 10-21 



Chapter 11 AppleTalk Session Protocol 

CONTENTS 

What ASP does I 11-4 

What ASP does not do I 11-4 

ASP services and features I 11-5 
Opening and closing sessions I 11-6 
Session maintenance I 11-9 
Commands on an open session I 11-10 

SPCommands I 11-10 
SPWrites I 11-11 
SP Attentions I 11-13 

Sequencing and duplicate filtration I 11-14 
Getting service status information I 11-15 

ASP client interface I 11-16 
Server-end calls I 11-16 

SPGetParms call I 11-16 
SPinit call I 11-17 
SPGetSession call I 11-17 
SPCloseSession call I 11-18 
SPGetRequest call I 11-18 
SPCmdReply call I 11-19 
SPWnContinue call I 11-20 
SPWnReply call I 11-21 
SPNewStatus call I 11-22 
SPAttention call I 11-22 

11-1 



Workstation-end calls I 11-23 
SPGetPanns call I 11-23 
SPGe!Starus call I 11-23 
SPOpenSession call I 11-24 
SPCloseSession call I 11-24 
SPCommand call I 11-25 
SPWrite call I 11-26 

Packet formats and algorithms I 11-27 
Opening a session I 11-27 
Getting seiVer status 11-29 
Sending a command request I 11-30 
Sending a write request I 11-32 
Maintaining the session I 11-35 
Sending an attention request I 11-36 
Closing a session I 11-36 
Checking for reply size errors I 11-37 
Timeouts and retry counts I 11-38 
SPFunction values I 11-39 

• 

11-2 CHAPTER 11 AppleTalk Session Protocol 



A W I D E VA R I E T Y of higher-level network services are built using the 

model of a workstation issuing a sequence of commands to a server. The 

server then carries out these commands and reports the results to the 

workstation. For example, in a filing service, file system commands are 

transported to a file server and are executed there; the results are then returned 

to the workstation. 

At the transport layer, the AppleTalk protocol architecture provides a reliable 

transaction service, via the AppleTalk Transaction Protocol (ATP), that can be 

used for transporting workstation commands to servers. However, ATP does 

not provide the full range of transport functions needed by many higher-level 

network services. This chapter describes the Apple Talk Session Protocol (ASP) 

designed specifically for the use of these higher-level services. 

ASP is a client of ATP; it adds value to ATP to provide the level of transport 

service needed for higher-level workstation-to-server interac!ion. • 

AppleTalk Session Protocol 11-3 



What ASP does 

The concept of a session is central to ASP. Two network entities, one in a workstation and the 
other in a server, can set up an ASP session between themselves. A session is a logical relationship 
(connection) between two network entities; it is identified by a unique session identifier. For the 
duration of the session, the workstation entity can (through ASP) send a sequence of commands 
to the server entity. ASP ensures that the commands are delivered without duplication in the same 
order as they were sent and conveys the results of these commands (known as a command reply or 
reply) back to the workstation entity. 

ASP sessions are inherently asymmetrical. The process of sening up a session is always initiated 
by the workstation entity (when it wishes to use the server entity's advertised service). Once the 
session is established, the workstation client of ASP sends commands, and the server client of ASP 
replies to the commands. ASP does not allow its server client to send commands to the 
workstation client. However, ASP provides an attention mechanism by which the server can inform 
the workstation of a need for attention. 

More than one workstation can establish a session with the same server at the same time. ASP 
uses the session identifier (session ID) to distinguish between commands received during these 
various sessions. The session ID is unique among all the sessions established with the same server. 

What ASP does not do 

ASP does not enforce the syntax or interpret the semantics of the commands sent by its 
workstation clients. Commands are conveyed as blocks of bytes to be interpreted by the server-end 
client of ASP. Similarly, command replies are sent back over the session to the workstation client 
without any syntactic or semantic interpretation by ASP. 

Although ASP guarantees that commands issued by the workstation end of a session are 
delivered to its server end in the same order as they were issued, ASP does not ensure that the 
commands are executed and completed in the specified order by the server end. This proper 
execution and completion of commands is the responsibility of the ASP client at the server end. 

11-4 CHAPTER 11 AppleTalk Session Protocol 



An important goal in the design of ASP was to make its client interface independent of the 
lower-level transport protocols. Therefore, the higher-level clients of ASP can be moved from one 
network to another with a minimum of modification. To achieve this, it is necessary to separate 
from ASP both the mechanism by which a server advertises its service and the manner in which a 
workstation looks for this advertised service. The way these procedures are accomplished depends 
primarily upon the transport and naming mechanisms of a particular network; these procedures are 
the responsibility of the ASP clients, not of ASP itself. 

For example, a server entity that needs to make its service known on the AppleTalk network 
calls ATP to open an ATP responding socket and then calls the Name Binding Protocol (NBP) to 
register a unique name on this socket. Once that is done, the server entity calls ASP to give to it the 
address of the ATP responding socket. ASP then starts listening on the socket for session-opening 
commands coming over the network. A workstation wishing to utilize this advertised service uses 
NBP to identify the service's socket address. Then the workstation client calls ASP to open a 
session. 

Setting up a responding socket and looking for the socket's address through NBP are done 
outside the scope of ASP. The participation of ASP starts with the process of serring up a session. 

ASP does not provide a user authentication mechanism. If needed, this mechanism must be 
supplied by a higher-level protocol than ASP. In addition, ASP does not provide any mechanism to 
allow the use of a particular session by more than one server entity. Such multiplexing of a session 
can be done by the ASP clients if higher-level protocols divide the function codes into ranges and 
manage them completely outside the scope of ASP. The use of a single session to gain access to 
various services on the same node is not recommended. 

ASP services and features 

ASP provides the following services to its clients: 

• setting up (opening) and tearing down (closing) sessions 

• sending commands on an open session to the server and returning command replies (which 
might include a block of data) 

• writing blocks of data from the workstation to the server end of the session 

• sending an attention from the server to the workstation 

• retrieving service status information from the server without opening a session 

ASP services and features 11-5 



Opening and closing sessions 

Before any sessions are opened, both the workstation ASP client and the server ASP client should 
interrogate ASP to identify the maximum sizes of commands and replies allowed by the underlying 
transport mechanism. Both ends of the session can use these sizes to determine whether the 
underlying transport services are adequate to their needs and to optimize the size of their 
commands and replies. 

The server entity makes itself known on the network by calling A TP to open an A TP 
responding socket, known as the session listening socket (SLS), and by registering its name on this 
socket. Then ASP begins listening on the SLS for session-opening requests coming in over the 
network. 

After identifying the internet address (the entity identifier) of the intended service's SLS, the 
workstation client calls ASP to open a session to this service. ASP sends a special OpenSess packet 
(an ATP request) to the Sl.S; this packet carries the address of a workstation socket to which 
session maintenance packets (discussed later in this chapter) are to be sent (see Figure 11-1). 

• Figure 11-1 ASP session-opening dialog 

OpenSessRcply is S<!nt back 
by the server ASP withmu 
its client's intervention. 

'-------~----~-------~> Time 

1.....--------------------.,> Time 

ASP workstation diem 
issue~ an SPOpenSess call. 

SI'OpenSess results arc returned 
to ASP work,tation d ienl. 

11-6 CHAPTER 11 AppleTalk Session Protocol 



This socket is referred to as the workstation session socket (WSS). If the server is able to 
establish a session, it returns a session acceptance indication, a session ID, and the number of the 
session's server-end socket, referred to as the server session socket (SSS). In all further 
communication over this session, all packets sent from the workstation must carry this session ID 
and must be sent to the SSS. 

ASP allows protocol version verification in this session-opening dialog. ASP in the workstation 
sends an ASP protocol version number in the OpenSess packet (to identify the version of ASP that 
the workstation is using). If the server's ASP is unable to handle this version, it returns an error, and 
the session is not opened. 

A session can be closed by the ASP client at either end by issuing the appropriate command to 
the client's ASP. That node's ASP notifies the other end and then immediately closes the session. If 
the session termination was initiated by the workstation client, then a session termination 
notification is sent to the SSS. If the session termination was initiated by the server client, then the 
notification is sent to the WSS. See Figure 11-2 and Figure 11-3. 

• Figure 11-2 Session-dosing dialog initiated by the workstation 

Server 

Workstation 

SPC!oseSession 
is delivered to 
ASP client. 

Session is closed 
at server end. 

ASP generates 
CloseSessReply 
without the ASP 
ditnt's inlervemion. 

sss I 

I \ 
1---------------------> Time 

CloseSessReply 
CloseSess TResp(TID = 12) 
TReq(TID • 12) 

\ I 
'------------------> Time 

ASP workstation client 
issues an SPC!oseSession c:III. 

Session is closed at the workstation 
as soon as CloseSessReply 
is received or the retries expire, 
whichever occurs first 

ASP services and features 11-7 



• Figure 11-3 Session-dosing dialog initiated by the seiVer 

Server 

Workstation 

ASP server client issues 
an SPCloseSession call. 

Session is closed at the server end 
as soon as CloseSessReply is 
received or the retries expire, 
whichever occurs first. 

I I 
'------:----------~:------> Time 

c~ese'' ~ 
TRcq(TID • t3) CloseSessReply 

\ ; D·<ll 
'----------------------> Time 

wss 
I 

ASP generates Session is dosed at 
CloseSessReply workstation end. 
without the ASP 
client's intervention. 

Whenever a session is tenninated, the ASP clients at both ends must be notified so that 
appropriate higher-level action can be taken. This notification is easily done at the seiVer end since it 
is generally listening for incoming commands on the session. But at the workstation end (if the 
seiVer end closed the session), the workstation ASP client may not be notified until the next time it 
tries to issue a command on that session. The actions taken by an ASP client, upon being infonned 
of the closing of a session, vary depending on the higher-level function. For example, the seiVer end 
might choose to free resources allocated for that session; or, if the higher-level seiVice is a filing 
seiVice, it might decide to flush and close all files opened during that session. 

11-8 CHAPTER 11 AppleTalk Session Protocol 



Session maintenance 

A session remains open until it is explicirly terminated by the ASP client at either end or until one 
end of the session goes down or becomes unreachable. ASP provides a mechanism known as session 
tickling that is initiated as soon as a session is opened. In session tickling, each end of the session 
periodically sends a packet to the WSS or SLS to inform the other end that it is functioning properly 
(see Figure 11-4). The packet sent by eirl1er end of the session is known as a tickle packet. If either 
end fails to receive any packets (tickles, requests, or replies) on a session for a certain predefined 
session maintenance timeout, it assumes that the other end has gone down or has become 
unreachable. When the session maintenance timeout occurs, the session times out and closes. Tickle 
packets are no longer sent out. 

• Figure 11-4 Tickle packet dialog 

SeJVer 

WorkS!ation 

SI.S 

'---------~---~---------> Time 

I \ k,. 

Upon opening the 
session, ASP starts 
this A Tl' transaction 
with ret!)' count 
equal to "infinite." 

Tickle TReq(TID = !)) 

n7 ·•<> \ 

'----------------------> Time 
Upon opening the WSS 
session, ASP starts 
this A TI' transaction 
with ret!)' count 
equal to "infinite." 

ASP services and features 11-9 



Commands on an open session 

Once a session has been opened, the workstation client of ASP can send a sequence of commands to 
the seiVer end. These commands are delivered in the same order as they were issued at the 
workstation end, and replies to the commands are returned to the workstation end by ASP. The 
two types of commands, SPCommands and SPWrites, differ in the direction of the primary flow of 
data. In addition, the seiVer end can send an SPAttention call to the workstation end to inform the 
workstation of some seiVer need. The following sections describe how ASP uses A TP to perform 
these commands. 

SPCommands 

SPCommands are very similar to A TP requests. The ASP workstation client sends a command 
(encoded in a variable-length command block) to the seiVer-end client requesting the seiVer to 
perform a particular function and to send back a variable-length command reply. Examples of such 
commands are requests to open a particular me on a me seiVer or to read a certain range of bytes 
from an already opened me. In the first case, a small amount of reply data is returned; in the second 
case, a multipacket reply might be generated. Each SPCommand translates into an A TP request sent 
to the SSS, and the command reply is received as one or more A TP response packets, as shown in 
Figure 11-5. 

In any case, ASP does not interpret the command block or in any way participate in the 
command's function. ASP simply conveys the command block to the seiVer end of the session and 
returns the command reply to the workstation-end client. The command reply consists of a 4-byte 
command result (CmdResult) and a variable-length command reply data block (CmdBlock). 

11-10 CHAPTER 11 AppleTalk Session Protocol 



• Figure 11-5 SPCommand dialog 

SPCommand is 
delivered to ASP client. 

ASP server client issues 
an SPCmdRcply call. 

sss I sss 
Server • • • ~ Time 

~------~----------------···~ 

Workswtion 

SPWrites 

\ \ \ 
CommandReplies TResp(TID ~ t6) 

Command • • • 
TReq(TID = t6) 

I 
ASP workstation client 
issues an SPCommand call. 

SPConunand results are 
returned to ASP client. 

When using an SPWrite call, the ASP client in the workstation intends to convey a variable-length 
block of data to the server end of a session and expects a reply. Since ASP uses ATP as its underlying 
transport protocol and since A TP is a protocol in which a requesting end essentially reads a 
multipacket block of data from the responding end, for efficiency it is necessary to translate the 
SPWrite into two transactions. Essentially, a write to the server end is accomplished by having the 
server initiate a transaction request to read the data from the workstation end. 

In the first transaction, ASP sends an ATP request to the SSS carrying the SPWrite's control 
information, known as the write command block. The server end examines this information to 
determine whether to proceed with reading the data from the workstation end. If it does not wish 
to proceed, the server returns an error in the ATP response packet. (This error is conveyed to the 
workstation client as the 4-byte command result.) Along with the error, up to eight ATP response 
packets can be sent back to the workstation. This transaction is illustrated in Figure 11-6. 

ASP services and features 11-11 



• Figure 11-6 SPWrite dialog (error condition) 

SPWrite is 
delivered to ASP diem ASP server client issues 
ASP client. error owm. :tn SPWnReply call. 

Server SSS • • • ~ Time 

~------------------------------···~ 

Workstation 

Write 
TReq(TIO = t7) 

L 

\\ \ 
WriteReplies TResp(TII) • t7) 

••• 

•••~Time 
~------------------------------···~ 
ASP workstation diem 
issues an SPWrite call. 

I 
SPWritc results are 
returned to ASP client. 

If the server decides to read the data, then the server's ASP sends an SPWrtContinue command, 
which is an ATP request to the WSS to read the data from the workstation end (see Figure 11-7). 
This ATP request could generate a multipacket ATP response carrying the write data to the server. 
Upon receiving the write data and performing the particular function requested in the SPWrite call, 
the server end then responds to the first ATP request (the Write command block) with the 
appropriate error message (this error message is conveyed to the workstation client as the 4-byte 
CmdResult) and up to eight WriteReply packets. 

11-12 CHAPTER 11 AppleTalk Session Protocol 



• Figure 11-7 SPWrite dialog (no error condition) 

Server 

Workstation 

SPWrilc is delivered 
10 ASP clicnl. 

I 
ASP diem issues 
SPWrileConlinue call. 

sss I 

Wrilc tlata is delivered 
10 ASP diem. 

ASP diem issues 
SPWnReply call. 

I 
s s 

,----------------... ----------

~---------------------------···----------~~~---

\ "'"LL. \\ 
WriteContinue 

llkq(TID = 19) 

Write 
TReq(ll D • Ul) 

I 

Replies 

l'lr i teReplies 

••• 
TResp(TID • t9) 

I 
~---------------------------···-------------------

WSS 

Time 

• •• 
TResp(TID • t!!) 

Time 

ASP workswtion diem 
issues an SPWritc call. 

SPWritc resuhs are 
returned to ASP client 

SPAttentions 

When a session is open, the server client can send an attention command to the workstation client 
(see Figure 11-8). The sole purpose of this command is to alert the workstation client of the 
server's need for attention. ASP delivers 2 bytes of attention data (from the command A TP user 
bytes) to the workstation client and acknowledges the attention command (with an ATP 
response), but the workstation client has the responsibility to act on the command. An example of 
the use of the attention mechanism might be for a server to notify a workstation of a change in 
the server's status. Upon receiving the attention command, the workstation could then issue an 
SPCommand to the server to find out the details of the status change. 

ASP services and features 11-13 



• Figure 11-8 SPAttention dialog 

Server 

Workstation 

ASP server diem issues 
an SPAuemion call. 

SPAttention 
call completes. 

I 

'---""'":"'---------~----------,> Time 

\ I 
Actention AtcentionReply 
TReq(TID • tiO) TResp(TID • tlO) 

\ I 
'----------------------.....,> Time 

WSS 

ASP generates the AuemionReply 
without the clienl s intervention and 
informs the diem of the auemion request. 

Sequencing and duplicate ffitration 

By including a sequence number in the appropriate packets exchanged by ASP, ASP ensures that 
commands are delivered to the server end in the same order as they were issued at the workstation 
end. 

The use of sequence numbers also allows ASP to make the ATP exactly-once (ATP-XO) service 
more robust. ATP-XO service guarantees that a request is delivered to the ATP client exactly once if 
the source and destination nodes are on the same Apple Talk network. Over an AppleTalk internet, 
however, a copy of the ATP request could be delayed in a router node and then delivered as a 
duplicate after the original transaction has been completed. As a result, a duplicate transaction 
would be delivered by A TP. This inherent problem of transaction protocols can be eliminated by 
giving sequence numbers to the transactions belonging to a session in order to ft!ter delayed 
duplicates. 

11-14 C H A PTE R 11 AppleTalk Session Protocol 



Getting service status information 

ASP provides an out-of-band service to allow its workstation clients to obtain a block of service 
status information from the SLS without opening a session. In the server, the status block is 
provided to ASP by the server-end ASP client and is returned in response to SPGetStatus commands 
received at the SI.S (see Figure 11-9). 

• Figure 11-9 SPGetStatus dialog 

Server 

Workstation 

GetStatuslleply is sent 
back by ASP without 
its client"s intervention. 

SLS SLS ... > 
'-----------~~---- • • • -~----""1 Time 

I Gec\~eplie' ru<~D-<1 1) 
Get.St.atus 

TReq(TID • til) 

I 
••• 

... > 
'----------------- • • • ------""1 Time 

ASP workstation client 
issues an SPGctStatus <:all. 

SI'GetStatus results are 
returned to ASP client. 

ASP services and features 11-15 



ASP client interface 
ASP's service interface is designed to be as independent as possible of the underlying AppleTalk 
transport mechanisms to allow easy porting of the higher-level protocols (ASP clients) to networks 
other than AppleTalk and to simplify some of the problems in the design of internet gateways. 
Regardless of the design, the internal specifications of ASP are very closely related to A TP, and so 
ASP itself may not be directly portable to other networks. 

Server-end calls 

This section describes the calls that can be issued by the server-end ASP client. 

SPGetParms call 

Before any sessions are allowed to be opened, the server's ASP client should first issue an 
SPGetParms call to retrieve the maximum values of command block size and quantum size. The 
MaxCmdSize is the maximum size command block tl1at can be sent to the server. The QuantumSize 
returned by this call is the maximum size reply block tl1at can be sent to an SPCommand or 
SPGetStatus call , and the maximum size of data that can be transferred in an SPWrtContinue 
transaction. On an AppleTalk network, since ASP is built on top of ATP, the value of MaxCmdSize 
returned will be 578 bytes and QuantumSize will be 4624 bytes (eight ATP response packets with 578 
data bytes each). For client-compatible session protocols implemented on other networks, these 
values may be different. 

Call parameters none 

Returned 
parameters 

MaxCmdSize 

QuantumSize 

maximum size of a command block 

maximum size of a reply block or 
SPWrtContinue write data 

11-16 CHAPTER 11 AppleTalk Session Protocol 



SPinit call 

Once it has opened a socket (SLS) and registered its name, the ASP client in the server must issue an 
SPinit call, passing the network-dependent SLSEntityldentifier as well as a ServiceStatusBlock to 
ASP. This block is used to hold the service status information to be returned in reply to SPGetStatus 
commands received at the SLS. The SLSEntityldentifier is the complete internet address of the SLS. 

SPinit returns the SLSRefNum (unique among all SLSs on the same server node), which is used in 
the SPGetSession call to refer to the SLS passed in the SPinit call. 

Call parameters SLSEntityldentifier 

Returned 
parameters 

SPGetSession call 

SeroiceStatusBlock 

SeroiceStatusBlockSize 

SLSRejNum 

SPError 

SLS internet address (network-dependent) 

block with status information 

size of status information block 

reference number for the SLS 

error code returned by ASP 

TooManyClients: Server implementation 
cannot support another client. 

SizeE": ServiceStatusBlockSize is greater 
than QuantumSize. 

The SPGetSession call is issued by the ASP server-end client to allow ASP to accept an SPOpenSession 
command received on the SLS identified by the SLSRefNum. Each SPGetSession call authorizes ASP 
to accept one more SPOpenSession command. The SPGetSession call completes when the 
SPOpenSession command is received on the SLS and a corresponding session has been opened. The 
SessRefNum is returned to the server ASP client and must be used in all further calls to ASP that 
refer to that session. This number must be unique among all sessions managed by ASP in the server 
end 

Call parameters SLSRejNum 

Returned SessRejNum 
parameters SPError 

reference number for the SLS 

session reference number 

error code returned by ASP 

ParamEm SLSRefNum is unknown. 

NoMoreSessions: Server implementation 
cannot support another session. 

ASP client interface 11-17 



SPCloseSession call 

The SPCloseSession call is issued by the ASP client to close the session identified by SessRetNum. As 
a result of the SPCloseSession call, the value of SessRetNum is invalidated and cannot be used in any 
further calls. In addition, all pending activity on the session is immediately canceled. 

can parameters SessRefNum 

Returned SPError 
parameters 

SPGetRequest call 

session reference number 

error code returned by ASP 

ParamErr: SessRefNqm is unknown. 

After a session has been opened, the ASP client in the server end must issue SPGetRequest calls to 
provide buffer space (ReqBuff) for the receipt of requests (workstation commands) on that 
session. The size (ReqBuffSize) of the buffer for receiving the command block sent with the 
request depends on the higher-level protocol but need not be greater than QuantumSize. 

When a request has been received, the SPGetRequest call completes and returns a unique request 
identifier (ReqRetNum) and a 1-byte quantity (SPReqType) that identifies the type of ASP request. 
The permissible values of SPReqType are Command, Write, and CloseSession. If the received 
command block does not fit in the ReqBuff, ASP returns as much of the command block as will fit, 
along with a BuffooSmall error. 

When the SPGetRequest call completes, the server-end client is given the size of the received 
command block in the parameter ActRcvdReqLen. 

If the session times out and an SPGetRequest call is pending, the call will complete with an 
SPError value of SessClosed. If no SPGetRequest call is pending, the next SPGetRequest call issued on 
the session will complete immediately with an error. 

11.:18 CHAPTER 11 AppleTalk Session Protocol 



Call parameters SessRejNum 

ReqBuff 

ReqBuffSize 

Returned 
parameters 

SPCmdReply call 

ReqRejNum 

SPReqType 

ActRcvdReqLen 

SPError 

session reference number 

buffer for receiving the command block 

buffer size 

request identifier 

ASP-level request type 

actual size of the received request 

error code returned by ASP 

ParamErr: SessRefNum is unknown. 

Bufl'ooSmall: ReqBuff cannot hold the 
entire command block. 

SessClosed: Session has been closed. 

If the request returned by the SPGetRequest call has SPReqType equal to Command, then the 
server-end client must respond to the request with an SPCmdReply call to ASP. The value of 
ReqRefNum passed with this call must be the same as that returned by the corresponding 
SPGetRequest call. The following two items must be conveyed to the workstation end of the 
session: 

m a 4-byte command result ( CmdResult) 

II a variable-length command reply data block ( CmdReplyData) 

The actual values, format, and meaning of the CmdResult and of the CmdReplyData are not 
interpreted by ASP. 

+ Note: CmdReplyDataSize must be no greater than QuantumSize; otherwise, a SizeErr will be 
returned and no CmdReplyData will be sent to the workstation. 

ASP client interface 11-19 



Call parameters SessRefNum 

ReqRefNum 

CmdResult 

CmdReplyData 

CmdReplyDataSize 

Returned 
parameters 

SPError 

SPWrtContinue call 

session reference number 

request identifier 

4-byte command result 

command reply data block 

size of command reply data block 

error code returned by ASP 

ParamErr: SessRefNum or ReqRefNum is 
unknown. CmdReplyDataSize is bad 
(negative value). 

SizeErr: CmdReplyDataSize is greater than 
QuantumSize. 

SessClosed: Session has been closed. 

If the request returned by the SPGetRequest call has SPReqType equal to Write, then the server-end 
client must respond to the request with either an SPWrtContinue or an SPWrtReply call to ASP. The 
value of ReqRefNum passed with these calls must be the same as that returned by the 
corresponding SPGetRequest call. 

The ASP client decides which of these calls to make, depending on the higher-level protocol; 
however, the following general description is provided. Upon receiving a request that has 
SPReqType equal to Write, the ASP client examines the command block received with the request. 
This block should contain, in the format appropriate to the higher-level protocol, a description of 
the type and parameters of the higher-level write operation being requested. The ASP client should 
use this command block information to decide if the requested operation can be carried out 
successfully. If the operation cannot be carried out, the ASP client should issue the SPWrtReply call 
with the appropriate higher-level protocol result code value in CmdResult indicating the failure and 
the reason for it. If the operation can be carried out, however, then the ASP client in the server 
should initiate the process of transferring the data to be written from the workstation end of the 
session by issuing the SPWrtContinue call. An SPWrtReply call should also be issued upon 
completion of the SPWrtContinue call and the ensuing write. 

For example, the higher-level client could be a ftling protocol requesting the server-end client to 
write a certain number of bytes to a particular ftle. If no such flle exists, the server end should send 
back a no such file indication by issuing an SPWrtReply call. Otherwise, the server end issues an 
SPWrtContinue call with a buffer into which the write data can be brought from the workstation, 
followed by an SPWrtReply once it has finished the write request. 

11-20 CHAPTER 11 AppleTalk Session Protocol 



The maximum size of the write data that will be transferred is equal to QuantumSize. 

can parameters SessRejNum 

ReqRejNum 

Buffer 

Buf!erSize 

Returned 
parameters 

SPWrtReply call 

ActlenRcvd 

SPError 

session reference number 

request identifier 

buffer for receiving the data to be written 

size of the buffer 

actual amount of data received into buffer 

error code returned by ASP 

ParamErr: SessRefNum or ReqRefNum is 
unknown. BufferSize is bad (negative 
value). 

SessC/osed: Session has been closed. 

The SPWrtReply call is issued by the ASP client in the server in order to terminate, either successfully 
or unsuccessfully, an SPWrite call received through SPGetRequest. With this SPWrtReply call, the ASP 
client provides ASP with the 4-byte command result and the variable-length command reply data 
block (maximum size equal to QuantumSize) to be conveyed to the workstation-end client. If a 
SizeErr is returned, no CmdReplyData will be sent to the workstation. 

can parameters SessRejNum 

ReqRejNum 

CmdResult 

CmdReplyData 

CmdReplyDataSize 

Returned SPError 
parameters 

session reference number 

request identifier 

4-byte command result 

command reply data block 

size of command reply data block 

error code returned by ASP 

ParamErr: SessRefNum or ReqRefNum is 
unknown. CmdReplyDataSize is bad 
(negative value). 

SizeErr: CmdReplyDataSize is greater than 
QuantumSize. 

SessClosed· Session has been closed. 

ASP client interface 11-21 



SPNewStatus call 

The SPNewStatus call is used by the ASP client to update the ServiceStatusBlock first supplied in 
the SPinit call. The previous status information is lost. All subsequent SPGetStatus calls issued by 
workstations will retrieve the new status block. 

Call parameters SLSRefNum 

Returned 
parameters 

SPAttention call 

SeroiceStatusBlock 

SeroiceStatusBlockSize 

SPError 

,.. 
reference number for the SLS 

block with status information 

size of status information block 

error code returned by ASP 

ParamErr: SLSRefNum is unknown 

SizeErr: SetviceStatusBlockSize is greater 
than QuantumSize. 

The SP Attention call sends the attention code to the workstation and waits for an 
acknowledgment. The only restriction placed on the value of the attention code is that it must not 
beO. 

Call parameters SessRefNum 

Returned 
parameters 

Attention Code 

SPError 

session reference number 

2-byte attention code (must be a number 
other than 0) 

error code returned by ASP 

ParamErr: SessRefNum is unknown; 
AttentionCode cannot be 0. 

NoAck: No acknowledgment received from 
workstation end. 

11-22 CHAPTER 11 AppleTalk Session Protocol 



Workstation-end calls 

This section describes the calls that can be issued to the server end by the workstation-end ASP 
client. 

SPGetParms call 

The SPGetParms call retrieves the maximum value of the command block size and the quantum size. 
This call is the same as the SPGetParms call for the server end. 

Call parameters none 

Returned 
parameters 

SPGetStatus call 

MaxCmdSize 

QuantumSize 

maximum size of a command block 

maximum data size for a command reply or 
a write 

The SPGetStatus call is used by a workstation ASP client to obtain status information for a 
particular server. If the status information received is too large to fit into the StatusBuffer 
provided with the call, then ASP returns a BufTooSmall error and as much of the status 
information as will fit in the StatusBuffer. 

Call parameters SLSEntityldentifler 

Returned 
parameters 

StatusBu.fler 

StatusBufferSize 

ActRcvdStatuslen 

SPError 

SLS internet address (network-dependent) 

buffer for receiving the status information 

size of status information buffer 

size of status information received 

error code returned by ASP 

NoServer: Server is not responding. 

BuflooSma/1: StatusBuffer cannot hold 
entire status. 

ASP client interface 11-23 



SPOpenSession call 

The SPOpenSession call is issued by an ASP client after obtaining the internet address of the SLS 
through an NBP Lookup call. If a session is successfully opened, then a SessRetNum is returned to 
the caller and should be used on all subsequent calls referring to this session. If a session cannot be 
opened, an appropriate SPError value is returned. AttnRoutine specifies a routine (part of the 
workstation-end ASP client) to be invoked upon receipt of an attention request from the server. 
The exact form that this parameter takes is implementation-dependent. 

Call parameters SLSEntityldentifier 

AttnRoutine 

Returned 
parameters 

SessRejNum 

SPError 

SPCloseSession call 

SLS internet address (network-dependent) 

attention routine indicator 

session reference number 

error code returned by ASP 

NoSeroer: Server is not responding. 

SeroerBusy: Server cannot open another 
session. 

BadVersNum: Server cannot support the 
offered version number. 

NoMoreSessions: Workstation 
implementation cannot support another 
session. 

The SPCloseSession call can be issued at any time by the ASP client to close a session previously 
opened through an SPOpenSession call. As a result of this call, the SessRefNum is invalidated and 
cannot be used in any further calls. In addition, all pending activity on the session is immediately 
canceled. 

Call parameters SessRejNum 

Returned SPError 
parameters 

session reference number 

error code returned by ASP 

ParamErr: SessRefNum is unknown. 

11-24 CHAPTER 11 AppleTalk Session Protocol 



SPCommand call 

Once a session has been opened, the workstation-end client can send a command to the server end 
by issuing an SPCommand call to ASP. A command block of maximum size (MaxCmdSize) can be 
sent with the command. If CmdBlockSize is larger than this maximum allowable size, the call 
completes with SPError equal to SizeErr; in this case, no effort is made to send anything to the 
server end. 

In response to an SPCommand, the server end returns the following two quantities: 

Iii a 4-byte command result 

11 a variable-length command reply that is returned in the ReplyBuffer. The size of the command 
reply received is returned in ActRcvdReplyLen. Since this size can be no larger than QuanturnSize, 
it is possible that only part of the reply will be returned in this call. If this happens, an SPError 
code of no em>r will be returned; the ASP workstation-end client is responsible for generating 
another command to retrieve the rest of the reply. 

Call parameters SessRefNum 

Returned 
parameters 

CmdBlock 

CmdBlockSize 

ReplyBuffer 

ReplyBufferSize 

CmdResult 

ActRcvdReplylen 

SPEm>r 

session reference number 

command block to be sent 

size of command block 

buffer for receiving the command reply 
data 

size of the reply buffer 

4-byte command result 

actual length of command reply data 
received 

error code returned by ASP 

ParamErr: SessRefNum is unknown. 

SizeErr: CmdBlockSize is larger than 
MaxCrndSize. 

SessCiosed: Session has been closed. 

BuflooSma/1: ReplyBuffer cannot hold the 
whole reply. 

ASP client interface 11·2S 



SPWrlte call 

The SPWrite call is made by the ASP client in order to write a block of data to the server end of the 
session. The call first delivers the CmdBlock (no larger than MaxCmdSize) to the server-end client of 
ASP and, as previously described, the server end can then transfer the write data or return an error 
(delivered in the CmdResult). 

The actual amount of data sent will be less than or equal to WriteDataSize and will never be 
larger than QuantumSize. The amount of write data actually transferred is returned in 
ActLenWritten. 

In response to an SPWrite, the server end returns two quantities: a 4-byte command result and 
a variable-length command reply that is returned in the Reply Buffer. The size of the command reply 
actually received is returned in ActRcvdReplyLen. Note that this size can be no larger than 
QuantumSize. 

Call parameters SessRejNum 

CmdBlock 

CmdBlockSize 

Write Data 

WriteDataSize 

Reply Buffer 

ReplyBu.fferSize 

Returned CmdResult 
parameters A ellen Written 

ActRcvdReplyLen 

SPError 

session reference number 

command block to be sent 

size of command block 

data block to be written 

size of data block to be written 

buffer for receiving the command reply 
data 

size of the reply buffer 

4-byte command result 

actual number of bytes of data written 

actual length of command reply data 
received 

error code returned by ASP 

ParamEm SessRefNum is unknown. 

SizeErr: CmdBlockSize is larger than 
MaxCmdSize. 

SessClosed: Session has been closed. 

Buf/'ooSmall: ReplyBuffer cannot hold the 
whole reply. 

11-26 CHAPTER 11 AppleTalk Session Protocol 



Packet formats and algorithms 

This section describes the internal details of ASP, including packet formats. For simplicity, the DDP 
and data-link headers are omitted from the packets shown in the figures. 

Opening a session 

When the workstation client issues an SPOpenSession call, ASP issues an ATP-XO transaction 
request addressed to the SLS, as shown in Figure 11-1. This ATP transaction request packet is 
known as an ASP OpenSess packet. The server's ASP returns an ATP transaction response packet 
known as an OpenSessReply packet. 

The OpenSess packet is shown in Figure 11-10 and carries the following in its ASP header (the 
ASP header is contained entirely in the A TP user bytes): 

• a 1-byte SPFunction field equal to OpenSess 

• a 1-byte field containing the WSS socket number 

• a 2-byte ASP version number field 

Upon receiving an OpenSess packet, the server's ASP checks to see if an SPGetSession is pending on 
that SLS. If no such call is pending, then the server's ASP returns a ServerBusy error in the 
OpenSessReply packet, and the session is not opened. If an SPGetSession is pending, then ASP 
checks the ASP version number in the OpenSess packet. If the version number is unacceptable, a 
BadVersNum error is returned. Otherwise, ASP opens an ATP responding socket (SSS) and generates 
a unique (per SLS) 1-byte session !D. ASP then creates its internal session management data 
structures in which the WSS is saved together with the session ID, the SLS, and related items. The 
OpenSessReply packet is then sent back to the workstation. This packet contains, in its ASP header 
(contained entirely in the ATP user bytes), a 2-byte error code (returned to the client as SPError), the 
1-byte session ID, and the SSS. The server end of the session is now active. The tickling process at 
this time is initiated from the server end. 

Upon receiving the OpenSessReply, the workstation-end ASP examines the packet's error code 
field. If this field indicates no error, then the session ID and the SSS are taken from the packet and, 
together with other control information, are saved in a session management data structure. At this 
point, the workstation end of the session is active, and the tickling process is initiated from the 
workstation end. 

Packet formats and algorithms 11-27 



• Figure 11-10 ASP packet formats for OpenSess and CloseSess 

ATP 
header 

ATP 
user 

b)1CS 

• • • 

1-

OpenSess OpenSessReply 

I I 
• • • • • • 

SPFunt1ion 
= OpcnSess 

sss 

WSS ~ssion ID 

ASP \'Crsion -
number 

1-
Error 
code 

CloscScss CloscSessReply 

• • • 

-

~~ b)1<:(8 bits)~ ~-1 h )1C (8 bits)~ 

ATP 
header 

ATP 
user 

b )1CS 

I I I 
• • • 

-

SPFunction 
= CJm,cSess 

Session ID 

0 

• • • • • • 

- f-

11-28 CHAPTER 11 AppleTalk Session Protocol 

0 

0 

0 

• • • 

-



The session management data structure must contain the session ID, the socket number of 
the other end of the session (the WSS or the SSS), and a 2-byte sequence number (LastReqNum). 
When the session is opened, the LastReqNum is initialized to 0. 

Getting server status 

Because an SPGetStatus call can be made and serviced without opening a session, the corresponding 
packets do not carry a session ID and do not have a sequence number field. The workstation-end 
ASP issues an ATP at-least-once transaction request addressed to the SLS. This request, known as a 
GetStatus packet, is sent to the SLS, as shown in Figure 11-9. 

The GetStatus packet has SPFunction equal to GetStatus, with the rest of the 3 ATP user bytes 
being unused and therefore set to 0, as shown in Figure 11-11. 

Upon receiving a GetStatus packet, the ASP at the server end returns up to eight 
GetStatusReply packets as the multi packet A TP response. Each of these packets has its 4 A TP user 
bytes equal to 0. 

The status information block provided in the SPinit or SPNewStatus call is sent as the ATP 
data of the GetStatusReply packets. The status information is packed into the reply packets with 
as many bytes as will fit (in other words, each GetStatusReply packet will contain 578 bytes of 
status infom1ation except for the last packet, which may contain less). 

Packet formats and algorithms 11-29 



• Figure 11-11 ASP packet formats for GetStatus 

All' 
header 

ATI' 
user 

bytes 

• • • 

t-

GetS latus 

SPFunction 
= GetStatus 

0 

0 

Sending a command request 

-

• • • 

All' 
data 

GetStatusReply 

~I byte (8bits)~ 

I I 
• • • 

r-

• • • 

0 

Status 
block 

(0 to ; 78 bytes) 

• • • 

-

-

-

• • • 

I 
When the ASP client in the workstation makes an SPCommand call, ASP sends an ATP-XO request 
to the SSS of the indicated session, as shown in Figure 11-5. This packet has SPFunction equal to 
Command. The packet contains the session ID and a 2-byte sequence number, as shown in 
Figure 11-12. The sequence number must be generated using the following algorithm: 

If LastReqNum = 65536 then LastReqNum := 0 

else LastReqNum : = LastReqNum+l; 

Sequence Number : = LastReqNum; 

11-30 CHAPT ER 11 AppleTalk Session Protocol 



• Figure 11-12 ASP packet formats for Command 

ATP 
header 

ATP 
user 

bytes 

ATP 
data 

Command Cmd.Reply 

~I b}1e (8 bits)~ ~I byte (8 bi!S)~ 

• • • 

-

SPFunCiion 
• Command 

Session ID 

Sequence 
number 

I I I 
• • • • • • 

t-

-

CmdResult' 

-

-

• • • 

-

Command • • Command 
block : : reply data 

,_ ___ {_O .to.57•8•b•yte•s--) --~~ ~~----(·O-to•57•8•b•yt•e~----~~ 
• • • 

• • • 

• In the first packet of a multipacket 
A TP transaaion response, this 
field holds the CmdResult. In all 
subsequent packets of a multipacket 
ATP transaction response. this field 
must be equal to 0. 

In effect, the sequence number will be 1 greater than the sequence number of the last command 
sent on the session. LastReqNum is initially set to 0 when the session is opened. 

The CmdBlock provided in the SPCommand call is sent in the ATP data part of the packet. 
Therefore, CmdBlock cannot be larger than 578 bytes. 

Packet formats and algorithms 11-31 



At the server end, ASP delivers the CmdBlock to the ASP client (if an SPGetRequest was 
pending; otherwise the packet is ignored). The ASP client in the server then makes an SPCmdReply 
call that is used to pass a 4-byte command result and a variable-length command reply data block to 
ASP. ASP generates from one to eight ATP response packets, which ASP sends back to the source of 
the Command packet. These CmdReply packets have the 4 ATP user bytes set to 0 except for the 
first CmdReply, which carries the command result in its user bytes. The command reply data block 
is broken up into eight or fewer pieces and sent in the ATP data part of these packets, as shown in 
Figure 11-12. 

Sending a write request 

When the ASP client in the workstation makes an SPWrite call, ASP sends an ATP-XO request to the 
SSS of the indicated session (shown in Figure 11-7). This packet has SPFunction equal to Write, and 
it contains the session ID of the session and a 2-byte sequence number, as shown in Figure 11-13. 
The sequence number must be generated using the algoridun described previously in "Sending a 
Command Request." 

The command block provided in the SPWrite call is sent in the ATP data part of the Write 
packet. Therefore, CmdBlock cannot be larger than 578 bytes. 

At the server end, ASP delivers the Write packet to the ASP client (if an SPGetRequest was 
pending; otherwise, the packet is ignored). The ASP client in the server determines if it can process 
the request, presumably by examining the contents of the command block. 

If the ASP client in the server cannot process the request, it encodes an appropriate higher-level 
protocol error message in the 4-byte command result or in the command reply data block or in both 
and makes an SPWrtReply call to ASP. An ATP response packet known as a WriteReply is then sent 
back to the source of the SPWrite, as shown in Figure 11-6. 

11-32 CHA PT ER 11 AppleTalk Session Protocol 



• Figure 11-13 ASP packet formats for Write 

ATI' 
header 

ATP 
user 

b)1CS 

ATP 
data 

Write WritcReply 

~I h}1C(8birs)~ ,-I byte(8bils )~ 

• • • 

f-

• • • 

SI'Function 
• \Vrire 

Session 10 

Sequence 
number 

Conunantl 
block 

(0 lO 578 b)1CS) 

I I I 
• • • • • • 

-

• • • • • • 

I I 

CmdHcsuh' 

CUIIIIIMIU..I 

rcrly data 
(0 10 'i78 b)1es) 

• • • 

-

-

-

• • • 

I 
' In the first racket of a muhiracker 

ATP transaction response. this 
fid d holds the CmdResuh. In all 
>uhscquent packers of a muhiracker 
ATP 1ransac1ion response. 1 hb field 
must be equal to 0. 

If, however, the ASP client in the server can process the request, it reserves a buffer for the data 
and makes an SPWrtContinue call to ASP. The SPWrtContinue call causes ASP in the server to send an 
ATP-XO transaction request to the WSS. This call carries the session ID and the sequence number 
taken from the SPWrite packet (used by ASP to match the WriteContinue with the corresponding 
Write), as shown in Figure 11-14. 

Packet formats and algorithms 11-33 



• Figure 11-14 ASP packet fonnats for WriteContinue 

ATI' 
header 

ATP 
user 

bytes 

ATP 
data 

WriteContinue WriteContlnueReply 

~1 byte (8 bits)~ ~1 byte (8 bits)~ 

I II I 
• • • 

-

-

SPFunction 
• WriteCominue 

Session lD 

Sequence 
number 

Available 
buffer size 

• • • • • • 

- -

-

• • • 

0 

Write data 
(0 to 578 bytes) 

• • • 

-

-

-

• • • 

I 
The WriteContinue packet contains a 2-byte ATP data field that contains the size in bytes of 

the buffer reserved by the server client for the write data. The workstation then returns the write 
data in the transaction response packets (WriteContinueReply packets). The data is then delivered 
to the server-end ASP client. The server-end ASP client then issues an SPWrtReply call to ASP that 
causes ASP to send one to eight WriteReply packets (the ATP response to the original Write packet). 
The fonnat of the WriteReply packet is shown in Figure 11-13. 

11-34 CHAPTER 11 AppleTalk Session Protocol 



Maintaining the session 

Tickle packets (ATP transaction request packets with SPFunction equal to Tickle) must be sent by 
each end while a session is open, as shown in Figure 11-4. 

Tickle packets are sent by the workstation to the SLS and by the server to the WSS. These 
packets contain the following information in their ASP header (the A TP user bytes), as shown in 
Figure 11-15: 

• 1-byte SPFunction equal to Tickle 

• Session!D 

• two unused bytes 

Tickle packets are sent by starting an ATP-ALO transaction with retry count equal to infinite and 
timeout equal to 30 seconds. 

Session maintenance at each end is done by starting a session maintenance timeout of 2 
minutes. Whenever any packet (tickle or otherwise) is received on the session, this timer is 
restarted. If the timer expires (in other words, if no packet is received for 2 minutes), then the other 
end of the session is assumed to have gone down or become unreachable, and the session is closed. 

• Figure 11-15 ASP packet formats for Attention and Tickle 

Tickle Attention AncntionReply 

~l by!e (sbils)~ ~l by!e (s bi!S)~ ~-I byle(sbi!S)~ 

All' 
header 

All' 
user 

bytes 

I I I II 
• • • 

-

SPFuna ion 
2 Tickle 

Session 1D 

0 

• • • • • • 

- -

SPFuna ion 
• AUemion 

Session ID 

Anenlion 
code 

• • • • • • 

-

-

- -

0 

• • • 

-

-

-

Packet formats and algorithms 11-35 



Sending an attention request 

When the ASP client in the server makes an SPAttention call , ASP sends an ATP-ALO request to the 
WSS of the indicated session, as shown in Figure 11-8. 

This Attention packet requests one response and has SPFunction equal to Attention. It 
contains the session ID and a 2-byte attention code, as shown in Figure 11-15. This attention code 
is passed by the server client to ASP to be delivered to the workstation client along with the 
attention request. The attention code is not interpreted by ASP, except that ASP requires the code 
to be a number other than 0. 

Upon receiving an Attention packet, the workstation-end ASP should immediately respond 
with an AttentionReply. The AttentionReply serves as an acknowledgment of the request, and it 
completes the SPAttention call on d1e server end. The workstation ASP should then, in an 
implementation-dependent manner, alert its client as to the attention request and pass the 
attention code to the client. 

Closing a session 

When the ASP client at either end makes an SPCloseSession call, a session-closing ATP-ALO 
transaction is initiated, as shown in Figure 11-2 and Figure 11-3. 

If the session closing was initiated by the workstation client, then a CloseSess packet (an ATP 
transaction request) is sent to the SSS in the server. The CloseSess packet is then delivered to the 
ASP client as part of the SPGetRequest mechanism. The server's ASP generates a transaction 
response (a CloseSessReply packet) without the ASP client's intervention. Immediately upon 
sending the CloseSessReply packet, the server end of the session is closed, all pending activity 
(including tickles) is canceled at that end, and no further server-end calls to this session are accepted. 
Immediately upon receiving the SPCloseSession command reply, the workstation end of ASP 
cancels all pending activity (including tickles) on the session and does not accept any more calls 
from its client. Although implementation-dependent, the workstation end can choose to 
retransmit the CloseSess packet several times; the workstation will close its end of the session 
either as soon as the CloseSessReply is received or the retries are exhausted. 

On the server end, the possibility exists that no SPGetRequest call was pending when the close 
request was received. In this case, no further calls on the server end should be accepted from the 
server-end ASP client, and the session should be marked as closed. When the server client issues the 
next SPGetRequest call for that session, ASP should return a SessClosed result code or other error. 

11-36 CHAPTER 11 AppleTalk Session Protocol 



If the session closing was initiated by the server end, then a CloseSess packet is sent to the 
WSS. The workstation's ASP closes the session immediately upon receipt of the CloseSess packet, 
and it generates the CloseSessReply packet without client intervention. The ASP client in the 
workstation can be informed of the session being closed in some implementation-dependent 
manner or can be informed the next time it makes a call to ASP and refers to that session. The server 
can choose to retransmit the CloseSess packet several times; the server end will close its end of the 
session when the CloseSessReply is received or the retries are exhausted. The formats of the 
CloseSess and CloseSessReply packets are shown in Figure 11-10. 

+ Note: The CloseSess packet does not include a sequence number and therefore must be 
accepted by the receiving end without sequence number verification. Also, the receipt of the 
CloseSess packet by the receiving end should immediately lead to the cancellation of all 
pending activity (including tickles) on the session. 

CloseSess packets are sent as a courtesy to the other end of the session and are used to speed up the 
process of closing a session at both ends. 

The possibility exists that the CloseSess packet or the CloseSessReply sent by either end can get 
lost; then the end initiating the session-dosing activity may not receive an acknowledgment to its 
request and will close the session and stop tickles when its retries are exhausted. If the other end 
did not receive the CloseSess packet at all, however, that end will not know the session has been 
closed. This half -open session will be detected when the session maintenance timer at the still 
active end expires, at which time the active end will close its own end of the half -open session. 

Checking for reply size errors 

In the SPGetStatus, SPCommand, and SPWrite requests, the ASP workstation client presents ASP 
with a buffer that will hold the server's reply. When the reply is received, ASP must check that the 
reply was not too large to fit into the buffer. Since the server does not directly return the aggregate 
size of the reply as a parameter, ASP must infer from information returned by ATP whether or not 
the server's reply fits into the client's buffer. 

ASP will try to fill this buffer by requesting from A TP as many 578-byte response packets as 
needed to fill the buffer. If the server returns fewer than the expected number of response packets, 
then the reply will clearly fit into the client's buffer. In general, if the server returns the expected 
number of response packets, then the workstation ASP need only check if the last expected packet 
fit into the end of the buffer. A TP will indicate to ASP if tllis packet did not fit. 

Packet formats and algorithms 11-37 



A difficulty arises if the client's buffer size was an exact multiple of 578 bytes. If the last 
expected packet is returned completely filled (contains 578 bytes of data), that might indicate that 
the buffer was just large enough. However, it could also mean that the reply was larger, yet the 
workstation ASP did not ask for (and hence could not receive) more response packets. ATP does 
not indicate to ASP that the server wanted to send additional packets. 

To resolve this problem, the workstation ASP must ask ATP for one more response packet 
than expected if the client's buffer size is a multiple of 578. If the reply size is larger than the client's 
buffer size, this extra response packet will be returned. ASP can infer from the reception of this 
extra packet that the reply was too large. 

This problem will not occur if the size of the client's buffer is greater than or equal to 
QuantumSize (a multiple of 578), since this reply is the largest that can be sent. The server's reply can 
not overflow this buffer. 

Ti.meouts and retry counts 

ASP uses ATP transactions as its basic building blocks. For each of these transactions, a 
retransmission timeout value and maximum retry count need to be provided. 

Most transactions used by ASP use a retry count of infinite (exceptions: opening a session, 
getting service status, requesting attention, and closing a session). The retry count of infinite 
involves no danger of leading to a deadlock, since half-open connections (in other words, the other 
end is unreachable) are easily detected through the tickling mechanism and the session maintenance 
timer. 

The ASP client should be able to specify the maximum number of retries used by the session 
opening, get service status information, and get attention and session-closing transactions, 
although the exact mechanism for doing so is implementation-dependent. 

The timeout value to be used in any of the transactions (with the exception of tickles) and 
how this value is specified by the client or built into ASP are implementation issues; they are not 
specified here. 

The session maintenance timer is of 2-minute duration. Tickles are retransmitted by each end 
every 30 seconds. 

11-38 CHAP TER 11 AppleTalk Session Protocol 



SPFunction values 

The pennissible SPFunction values are as follows: 

SPPunction Value 

doseSess 1 

Command 2 

GetStatus 3 
OpenSess 4 

Tickle 5 
Write 6 
WriteContinue 7 

Attention 8 

Packet formats and algorithms 11-39 



Chapter 12 AppleTalk Data Stream Protocol 

CONTENTS 

ADSP services I 12-4 

Connections I 12-4 
Connection states I 12-5 
Half-open connections and the connection timer I 12-5 
Connection identifiers I 12-6 

Data flow I 12-6 
Sequence numbers I 12-7 
Error recovery and acknowledgments I 12-7 
Flow control and windows I 12-8 
ADSP messages I 12-9 
Forward resets I 12-9 
Summary of sequencing variables I 12-10 

Packet format I 12-12 

Control packets I 12-14 

Data-flow examples I 12-15 

Attention messages I 12-19 

12-1 



Connection opening I 12-22 
Connection-opening dialog I 12-24 
Open-connection Control packet format I 12-27 
Error recovery in the connection-opening dialog I 12-30 
Connection opening outside of ADSP I 12-34 
Connection-listening sockets and servers I 12·35 
Connection-opening filters I 12-36 

Connection closing I 12-38 

• 

12-2 CHAPTER 12 AppleTalk Dara Stream Protocol 



T H E A P P L ETA L K DATA STREAM P R 0 T 0 C 0 L (ADSP) 

is a symmetric, connection-oriented protocol that makes possible the 

establishment and maintenance of full-duplex streams of data bytes between 

two sockets in an AppleTalk internet. Data flow on an ADSP connection is 

reliable; ADSP guarantees that data bytes are delivered in the same order as 

they were sent and that they are free of duplicates. In addition, ADSP 

includes a flow-control mechanism that uses information supplied by the 

intended destination. These features are implemented by using sequence 

numbers logically associated with the data bytes. • 

AppleTalk Data Stream Protocol 12-3 



ADSP services 

ADSP provides the client with a simple, powerful interface to an AppleTalk network. Using ADSP, 
the client can open a connection with a remote end, send data to and receive data from the remote 
end, and close the connection. 

The client can either send a continuous stream of data or logically break the data into messages 
that can be understood by the remote end client. ADSP also provides an attention message 
mechanism that the client can use for its own internal control. A forward-reset mechanism allows 
the client to abort the delivery of an outstanding stream of bytes to the remote client. 

Connections 

This section defines connections, connection ends, and connection identifiers (ConniDs) and 
explains the roles that they play in ADSP. 

A connection is an association between two sockets that allows reliable, full-duplex flow of 
data bytes between the sockets. With ADSP, the data bytes are delivered in the same order as they 
were inserted into the connection. In addition, ADSP includes a flow-control mechanism that 
regulates data transmission based on the availability of reception buffers at the destination. 

At any time, a connection can be set up by either or both of the communicating parties. The 
connection is torn down when it is no longer required or if either connection end becomes 
unreachable. In order for the protocol to function correctly, a certain amount of control and state 
information must be maintained at each end of a connection. Opening a connection involves setting 
up this information at each end and bringing the two ends of the connection to a synchronized 
condition. The information at each end is referred to as the state of that connection end; the term 
connection state refers collectively to the information at both ends. Connection end is a general 
term that covers both the communicating socket and the connection information associated 
with it. 

12-4 CHAP T E R 12 AppleTalk Data Stream Protocol 



Connection states 

A connection between two sockets can be either open or closed. When an association is set up 
between two sockets, the connection is considered an open connection; when the association is 
tom down, the connection is considered a closed connection. A connection end can be in one of 
two states: established or closed. For a connection to be open, both its ends must be established. If 
one end of a connection is established but the other is closed (or unreachable), the connection is said 
to be half-open. Data can flow only on an open connection. 

ADSP specifies that only one connection at a time can be open between a pair of sockets. 
However, several connections can be open on the same socket, but the other ends of these various 
connections must be on different sockets. 

A connection end can be closed at any time by the connection end's client. The connection end 
should inform the remote end that it is going to close. At this time, the connection could become 
temporarily half-open until the remote end also closes. Once both ends have closed, the connection 
is closed. See "Connection Opening " and "Connection Closing " later in this chapter for details on the 
mechanisms used to open and close connections. 

Half-open connections and the connection timer 

A connection is half-open when one end goes down or becomes unreachable from the other end. In 
a half -open connection, the end that is still established could needlessly consume network 
bandwidth. Even in the absence of network traffic, resources (such as timers and buffers) would be 
tied up at the established end. Therefore, it is important that ADSP detect half-open connections. 
After detecting a half-open connection, ADSP closes the established end and informs its client that 
the connection has been closed. 

To detect half-open connections, each end maintains a connection timer that is started when 
the connection opens. Whenever an end receives a packet from the remote end, the timer is reset. 
The timer expires if the end does not receive any packets within 30 seconds. When the timer expires, 
the end sends a probe and restarts the connection timer. A probe is a request for the remote end to 
acknowledge; the probe itself serves as an acknowledgment to the remote end. Failure to receive 
any packet from the other end before the timer has expired for the fourth time (that is, after 2 
minutes) indicates that the connection is half-open. At that time, ADSP immediately closes the 
connection end, freeing all associated resources. 

Connections 12-5 



Connection identifiers 

A connection end is identified by its internet socket address, which consists of a socket number, a 
node 10, and a network number. In addition, when a connection is set up, each connection end 
generates a ConoiD. A connection can be uniquely identified by using both the internet socket 
address and the ConniD of the two connection ends. 

A sender must include its ConoiD in all packets, so that it is clear to which connection the 
packet belongs. For example, if a connection were set up, closed, and then set up again between the 
same two sockets, it is possible that undelivered packets from the first connection that remained 
in internet routers could arrive after the second connection was open. Without the ConoiD, the 
receiving end could mistakenly accept these packets because they would be indistinguishable from 
packets belonging to the second connection. 

An ADSP implementation maintains a variable, LastConniD, that contains the last ConniD 
used. LastConoiD is initially set to some random number. When establishing a new connection end 
on a particular socket, ADSP generates a new identifier by increasing LastConniD until it reaches a 
value that is not being used by a currently open connection on the socket. This value becomes the 
ConniD of the new connection end. ConniDs are treated as unsigned integers in the range of 1 
through ConniDMax. After reaching the value ConniDMax, ConniDs wrap around to 1. A valid 
ConoiD is never equal to 0; in fact, a ConniD of 0 must be interpreted as unknown. 

The value of ConniDMax, and therefore the range of the ConoiDs, is a function of the rate at 
which connections are expected to be set up and broken down (that is, how quickly the ConniD 
number wraps around) and of the maximum packet lifetime (MPL) for the internet. If connections 
are set up and broken down rapidly, then a higher value of ConoiDMax is required. Likewise, the 
longer the MPL, the higher the value required for ConniDMax. ADSP uses 16-bit ConoiDs (that is, 
ConniDMax equals $FFFF). 

Data flow 
Either end of an open connection accepts data from its client for delivery to the other end's client. 
This data is handled as a stream of bytes; the smallest unit of data that can be conveyed over a 
connection is 1 byte (8 bits). The flow of data between connection ends A and B can be viewed as 
two unidirectional streams of byte~ne stream from end A to end B and the other stream from 
end B to end A. Although the following discussion focuses on the data stream from end A to end 
B, it can be applied equally well to the stream from end B to end A by interchanging A and B in the 
discussion. 

12-6 CHA P T E R 12 AppleTalk Data Stream Protocol 



Sequence numbers 

ADSP associates a sequence number with each byte that flows over the connection. End B 
maintains a variable, RecvSeq, which is the sequence number of the next byte that end B expects to 
receive from end A. End A maintains a corresponding variable, SendSeq, which is the sequence 
number of the next new byte that end A will send to end B. 

End B initially sets the value of its RecvSeq to 0. Upon first establishing itself, end A 
synchronizes its SendSeq to the initial value of end B's RecvSeq, which is 0. The first byte that is 
sent by end A over the connection is treated as byte number 0, with subsequent bytes numbered 1, 
2, 3, and so on. Sequence numbers are treated as unsigned 32-bit integers that wrap around to 0 
when increased by 1 beyond the maximum value $FFFFFFFF. 

Since AppleTalk is a packet network, bytes are actually sent over the connection in packets. 
Each packet carries a field known as PktFirstByteSeq in its ADSP header. PktFirstByteSeq is the 
sequence number of the first data byte in the packet. Upon receiving a packet from end A, end B 
compares the value of PktFirstByteSeq in the packet with its own RecvSeq. If these values are 
equal, end B accepts and delivers the data to its client. End B then updates the value of RecvSeq by 
adding the number of data bytes in the packet just received to its current value of RecvSeq. Using 
this process, end B ensures that data bytes are received in the same order as end A accepted them 
from its client and that no duplicates are received. 

When end B receives a packet with a PktFirstByteSeq value that does not equal end B's 
RecvSeq, end B discards the data as out of sequence. Acceptance of data in only those packets with 
PktFirstByteSeq values equal to the receiver's RecvSeq values is referred to as in-order data 
acceptance. 

Some ADSP implementations accept and buffer data from early-arriving, out-of-sequence 
packets, processing the data for client delivery when the intervening data arrives. Such an 
implementation may also accept packets that contain both duplicate and new data bytes; in this 
case, the receiving end discards duplicate data and accepts the new data. This approach, which is 

referred to as in-window data acceptance, can reduce data retransmission and improve throughput. 
However, because in-window data acceptance adds complexity to implementation, it is an option, 
rather than a requirement, of ADSP. 

Error recovery and acknowledgments 

The sequence-number mechanism provides the framework for acknowledging the receipt of data, 
recovering data packets when they are lost in the network, and filtering duplicate and out-of
sequence packets. 

Data flow 12-7 



End A maintains a send queue that holds all data sent by it to end B. A variable, FirstRtmtSeq, 
contains the sequence number of the oldest byte in the send queue. 

End B acknowledges receipt of data from end A by sending a sequence number, 
PktNextRecvSeq, in the ADSP header of any packet going from end B to end A over the connection. 
This number is equal to end B's RecvSeq at the time that end B sent the packet. When end A 
receives this packet, the value of PktNextRecvSeq informs end A that end B has already received all 
data sent by end A up to, but not including, the byte numbered PktNextRecvSeq. End A uses this 
information to remove all bytes up to, but not including, number PktNextRecvSeq from its send 
queue. End A must then change its FirstRtmtSeq value to equal the value of PktNextRecvSeq. 

Note that the value of PktNextRecvSeq must fall between FirstRtmtSeq and SendSeq (that is, 
FirstRtmtSeq =:;; PktNextRecvSeq =:;; SendSeq). If the value does not fall in that range, end A should 
not update FirstRtmtSeq. In addition, even if an incoming packet's data is rejected as out of 
sequence, the value of PktNextRecvSeq, if in the correct range, is still acceptable and should be used 
by end A to update FirstRtmtSeq (since end B has received all bytes up to that point). 

At times, end A may determine that some data within the stream that it already sent may not 
have been delivered to end B. In such a case, end A retransmits all data bytes in the send queue 
whose delivery has not been acknowledged by end B; these data bytes have sequence numbers 
from FirstRtmtSeq through SendSeq-1. 

One of the advantages of using byte-oriented sequence numbers is that they offer flexibility 
for data retransmission. Previously sent data can be regrouped and retransmitted more efficiently. 
For example, if end A has sent several small data packets to end B over some period of time, and end 
A determines that it must retransmit all the data bytes in its send queue, it is possible that all of the 
data bytes in the previous small packets could fit within one ADSP packet for retransmission. It is 
also possible for end A to append some new data to the bytes being retransmitted in the packet. 

Flow control and windows 

ADSP implements a flow-control mechanism to ensure that one end does not send data that the 
other end does not have enough buffer space to receive (known as choking data flow at its source). 
In order for this mechanism to work, end B must periodically inform end A of the amount of 
receive buffer space it has available. This process is referred to as informing end A of end B's 
reception window size. 

12-8 C H A P T E R 12 AppleTalk Data Stream Protocol 



End B maintains a variable, RecvWdw, which is the number of bytes end B currently has space 
to receive. When sending a packet to end A, end B always includes the current value of its RecvWdw 
in a field of its ADSP header known as PktRecvWdw. End A maintains a variable, SendWdwSeq, 
which represents the sequence number of the last byte for which end B currently has space. End A 
obtains this value from any packet that it receives from end B by adding the value of 
PktRecvWdw-1 to the value of PktNextRecvSeq. End A does not send bytes numbered beyond 
SendWdwSeq because end B does not have enough buffer space to receive them. However, if end B 
receives a packet whose data would exceed the available buffer space, end B discards the data. 

Since ADSP does not support the ability for a client to revoke buffer space, the value of 
SendWdwSeq should never decrease. If a connection end receives a packet that would cause 
SendWdwSeq to decrease, this value is not updated. 

Note that RecvWdw is a 16-bit field; the window size at either end is limited to 64 Kbytes 
($FFFF). 

ADSP messages 

ADSP allows its clients to break the data stream into client-intelligible messages. A bit can be set in 
the ADSP packet header to indicate that the last data byte in the packet constitutes the end of a 
client message. The receiving end must inform its client after delivering the last byte of a message. 

An ADSP packet can have its end-of-message (EOM) bit set and must not contain client data. 
This situation would indicate that the last data byte received in the previous packet was the last in 
a message. In order to handle this case properly, the EOM indicator is treated as if it were a byte 
appended to the end of the message in the data stream. Therefore, an EOM always consumes one 
sequence number in the data stream, just beyond the last byte of the client message. Since no data 
byte actually corresponds to this EOM sequence number, it is possible that an EOM packet may 
contain no data. 

Forward resets 

The forward-reset mechanism allows an ADSP client to abort the delivery of any outstanding data 
to the remote end's client. A forward reset causes all bytes in the sending end's send queue, all bytes 
in transit on the network, and all bytes in the remote end's receive queue that have not yet been 
delivered to the client to be discarded, and it then causes the two ends to be resynchronized. 

Data flow 12-9 



When a client requests a forward reset, its ADSP connection end first removes any unsent 
bytes from its send queue and then resets the value of its FirstRtmtSeq to that of its SenqSeq. This 
process effectively flushes all data that has been sent but not yet acknowledged by the remote 
end. The client's connection end then sends the remote connection end a Forward Reset Control 
packet with PktFirstByteSeq equal to SendSeq. 

Upon receiving a Forward Reset Control packet, ADSP verifies that the value of 
PktFirstByteSeq falls within the range from RecvSeq to RecvSeq+RecvWdw, inclusive. If the value 
does not fall within this range, the forward reset is disregarded. If the forward reset is accepted, 
RecvSeq is synchronized to the value of PktFirstByteSeq, all data in the receive queue up to RecvSeq 
is removed, and the client is informed that a forward reset was received and processed. The receiver 
then sends back a Forward Reset Acknowledgment Control packet with PktNextRecvSeq set to the 
newly synchronized value of RecvSeq. The Forward Reset Acknowledgment Control packet is sent 
even if the Forward Reset Control packet was disregarded as out of range. 

When sending a Forward Reset Control packet, the connection end starts a timer. The timer is 
removed upon receipt of a valid Forward Reset Acknowledgment Control packet. To be valid, a 
Forward Reset Acknowledgment Control packet's PktNextRecvSeq must fall within the range 
SendSeq :5; PktNextRecvSeq :5; SendWdwSeq+ 1. If the timer expires, the end retransmits the 
Forward Reset Control packet and restarts the timer. This action continues until either a valid 
Forward Reset Acknowledgment Control packet is received or until the connection is tom down. 

The forward-reset mechanism is nondeterministic from the client's perspective because any or 
all of the outstanding data could have already been delivered to the remote client. However, the 
forward-reset mechanism does provide a means for resetting the connection. 

Summary of sequencing variables 

To summarize, the ADSP header of all ADSP packets includes the following three sequencing 
variables: 

Variable 

PktFirstByteSeq 

PktNextRecvSeq 

PktRecvWdw 

Description 

the sequence number of the packet's first data byte 

the sequence number of the next byte that the packet's sender expects to 
receive 

the number of bytes that the packet's sender currently has buffer space to 
receive 

12-10 CHAPTER 12 AppleTalk Data Stream Protocol 



Each connection end must maintain the following variables as part of its connection-state 
descriptor: 

SendSeq the sequence number to be assigned to the next new byte that the local end 
will transmit over the connection 

FirstRtmtSeq 

SendWdwSeq 

RecvSeq 

RecvWdw 

the sequence number of the oldest byte in the local end's send queue 
(Initially, the queue is empty so this number equals SendSeq.) 

the sequence number of the last byte that the remote end has buffer space 
to receive 

the sequence number of the next byte that the local end expects to receive 

the number of bytes that the local end currently has buffer space to receive 
(Initially, the entire buffer is available.) 

Figure 12-1 illustrates how these variables would relate to a connection end's send and receive 
queues and sequence-number space. 

• Figure 12-1 Send and receive queues 

lncre-Jsing 
sequence numthcr~;---H 

FirstRtmtScq- - --- --------' 

SendSeq--------------------- ---...1 

Increasing 
Sl'qUCnce nUmlbc!l;---H 

Send queue 

• Bytes sent; have not 
received acknowledgment yet 

0 Remaining free space 
within the send window 

Receive queue 

• Bytes sent; client 
has n01 read yet 

0 Free buffer space in the 
receive queue 

Data flow 12-11 



Packet format 
Figure 12-2 illustrates an ADSP packet. The packet consists of the data-link and Datagram Delivery 
Protocol (DDP) headers, followed by a 13-byte ADSP header and up to 572 bytes of ADSP data. To 
identify an ADSP packet, the DDP type field must equal 7. 

The ADSP header contains the following sequence of fields: 

• a 16-bit source ConniD 

• a 32-bit PktFirstByteSeq 

• a 32-bit PktNextRecvSeq 

• a 16-bit PktRecvWdw 

• an 8-bit ADSP descriptor 

If the Control bit in the descriptor field is set, the packet is an ADSP Control packet. Control 
packets are sent for internal ADSP purposes, and they do not carry any ADSP data bytes. Control 
packets do not consume sequence numbers. 

In sending either a Data packet or a Control packet, the ADSP client can set the Ack Request bit 
in the descriptor field to indicate that it wants the remote end's ADSP to send back an ADSP packet 
immediately, with PktNextRecvSeq and PktRecvWdw equal to the current values of its RecvSeq and 
RecvWdw. Upon receiving a packet whose Ack Request bit is set, an ADSP connection end must 
respond to the acknowledgment request, even if the packet is to be discarded as out of sequence; 
the Ack Request bit forces the receiving end's ADSP to send an immediate acknowledgment. 

Setting the Attention bit in the ADSP descriptor field designates the packet as an ADSP 
Attention packet. Attention packets are used to send and acknowledge attention messages. Any 
Attention packet that contains a client-attention message will have its Control bit clear and its Ack 
Request bit set. Setting the Ack Request bit forces the receiver to immediately send an 
acknowledgment of the attention data. An Attention packet with its Control bit set is an 
attention-control packet for internal ADSP purposes. Attention-control packets are used to 
acknowledge attention messages and should not have the Ack Request bit set. The Control code in 
the ADSP descriptor field of an ADSP Attention packet must always be set to 0. An Attention 
packet received with a Control code number other than 0 should be discarded as invalid. Attention 
packets are described in detail in "Attention Messages" later in this chapter. 

Setting the EOM bit in the ADSP descriptor field indicates a logical end of message in the data 
stream. This bit applies only to client Data packets, and so neither the Control bit nor the Attention 
bit can be set in a packet whose EOM bit is set. 

12-12 CHAP T ER 12 AppleTalk Data Stream Protocol 



• Figure 12·2 ADSP packet format 

ADSP header 

ADSP data 

-

-
-
-

-
-
-

-

• • • 

DDP type • 7 

Source 
ConniD 

PktFirst l3)1eSeq 

PktNcxtRcrvSeq 

PktRecvWd\\· 

ADSP desrriptor 

(0 10 572 bytes) 

-

-
-
-

-

-
-

-

• • • 

I 

-

.------ - Control bit 
.----- Ack Request bit 
.---- EO~ I bit 

Packet format 12·13 



Control packets 

ADSP packets are of two broad classes: Data packets and Control packets. Control packets can be 
distinguished from Data packets by examining the Control bit in the packet's ADSP Descriptor 
field; when set, this bit identifies a Control packet. Such packets are sent for ADSP's internal 
operation and do not contain any client-deliverable data. 

Control packets are used to open or to close connections, to act as probes, and to send 
acknowledgment information. The least-significant 4 bits of a Control packet's descriptor field 
contain a Control code that identifies the type of the ADSP Control packet. The following list 
shows the Control codes and their corresponding types: 

Value ADSP Control code 

0 Probe or Acknowledgment 

1 Open Connection Request 

2 Open Connection Acknowledgment 

3 Open Connection Request and Acknowledgment 

4 Open Connection Denial 

5 Close Connection Advice 

6 Forward Reset 

7 Forward Reset Acknowledgment 

8 Retransmit Advice 

Apple Computer reserves values $9 through $F for potential future use, so these values must be 
treated as invalid. Control packets with these invalid Control codes are rejected by the receiving end. 

A Control code of 0 can have two different meanings, depending on the state of the Ack 
Request bit If the Ack Request bit is set, the packet is a Probe packet, so the receiving end should 
send an acknowledgment immediately. If the Ack Request bit is not set, then the control packet is 
an Acknowledgment packet. (Note that an acknowledgment is implicit in any valid ADSP packet; 
also, the Ack Request bit can be set in either a Data packet or a Control packet. Therefore, a Control 
packet with a Control code of 0 is used only when the sending end has no client data to accompany 
the acknowledgment or acknowledgment request.) 

Open-connection Control codes are sent as part of the open-connection dialog. This dialog is 
explained in detail in "Connection Opening" later in this chapter. Before being closed by ADSP, a 
connection end sends a Close Connection Advice Control packet. This packet is purely advisory and 
requires no reply. Upon receiving such a packet, ADSP closes the connection. For additional details, 
see "Connection Closing" later in this chapter. 

12-14 CHAPTER 12 AppleTalk Data Stream Protocol 



The Forward Reset Control packet provides a mechanism for a client to abort the delivery of all 
outstanding data that it has sent to the remote client. Upon receiving this packet, the remote end 
synchronizes its RecvSeq to the value of PktFirstByteSeq in the packet and removes all undelivered 
bytes from its receive queue. The remote end then returns a Forward Reset Acknowledgment 
Control packet to the other end and informs its client that it has received and processed a forward 
reset request. 

A connection end may send the Retransmit Advice Control packet in response to receiving 
several consecutive out-of-sequence Data packets from the remote end. The packet is sent to 
inform the remote end that it should retransmit the bytes in its send queue beginning with the 
byte whose sequence number is PktNextRecvSeq. 

Data-flow examples 
The following figures give examples of data flow on an ADSP connection. In these examples, end A 
sends Data and Control packets to end B, and end B receives data and sends acknowledgments to 
end A. However, the examples apply equally well for the opposite situation in which end B sends 
the Data and Control packets to end A, and end A receives the data and sends acknowledgments to 
end B. 

In the figures, the packets are indicated by arrows that run diagonally between the two 
connection ends. The bracketed ranges (for example, (0:5]) indicate the range of sequence numbers 
assigned to data bytes transmitted in the packet. The first number in the range corresponds to 
PktFirstByteSeq. Ctl indicates Control packets. A vertical line above or below the time arrows 
indicates an event, either the transmission or reception of a packet. TI1e values of variables before an 
event occurs are shown on the left side of the vertical line; values after the event are shown on the 
right side. The packet variables of all packets sent by connection end B are listed along end B's time 
axis. 

Figure 12-3 illustrates how the ADSP variables relate to the flow of data. In this example, 
end A sends an acknowledgment request when it exhausts its known send window. 
Acknowledgments are implicit in all packets sent from end B, regardless of whether they are Data 
packets or Control packets. 

Data-flow examples 12-15 



• Figure 12-3 ADSP data flow 

Conn~ction 
end B 

PktFirstUyteScq = 0 
Pkt~extRecvSeq ~ II 

PktRe<.vBytcWdw • 20 

PktFir.;tB)lCSeq = 13 
Pkti\extRec\'Seq z 31 

PktRecvllyteWdw z 20 

I 

[06) [6:10) [1 1:151 [16: 191 [20:23) [24:301 + (31:451 

Conncaion 
end A 

II 111 7~~ I 
'-----------------------------> Time 

Fir.;tRtmtSeq • 0 
SendScq • 0 

SendWdwSeq = 20 
RL'C\'Sl'q • 0 

I SendSeq • II 

SendSeq • 6 

I I 
ISendSeq = 31 

ScndSeq • 24 
Send~eq ~ 20 

SendSeq • 16 

FirstRumSeq a I I 
SendWdwSeq • 30 
RcC\•Seq • 13 

i SendScq z 46 

FirstRuntScq • 31 
SendWdwSeq • 50 
RccvSeq • 13 

Figure 12-4 shows an example of recovery from a lost packet. In this example, the first packet 
sent by end A is lost. The receiver discards subsequent packets because they are out of sequence. 
Some event (a retransmit timer goes off or perhaps the send window is exhausted) causes end A to 
send an acknowledgment request. End B acknowledges, and end A retransmits all of the lost data. 

12-16 CHAPTER 12 AppleTalk Data Stream Protocol 



• Figure 12-4 Recovery from a lost packet 

Connection 
end ll 

OUI-of-scquence 
packet is recch·ed. 

Out-of-sequence 
packet is recci,·ed. 

I 

PktFirstll)1eSeq = 0 
PktNt:xtRccvScq = 0 

PktRccvWdw = 25 

PktFirstll)1eSeq = 0 
PktNextKccvSeq = 25 

PktRecvWdw = 25 

10:241 + 
Ack Request 

Ctl 

Connection 
end A '-------------------------------,> Time 

FirstRtmtSeq • 0 
SendSeq • 0 

ScndWdwSeq = 24 
RecvScq = 0 

I SendS<.'Q • 25 

SendScq • 15 

SendSeq • 6 

I 
FirstRtmtSeq • 0 
ScndWdwSeq z 24 
RecvSeq = 0 

FirstRtmtScq • 25 
ScndWdwScq • 49 
RecvSeq • 0 

Data-flow examples 12-17 



Figure 12-5 gives an example of an idle connection state. Neither client is sending data, so both 
connection ends periodically send a probe to determine whether the connection is still open. 

In Figure 12-6, packets from end B are lost, so ADSP eventually tears down the connection. 

• Figure 12-5 Idle connection state 

Connection 
end B 

Connection 
end A 

PktFirstOyteScq = 0 
Pkt:\extRecvSeq • 256 

Pktl!ccvWdw = 256 
I 

10:2551 + 
Ack Request 

I 

PktFir..IB)1CScq • 0 
PktNcxtRecvScq • 256 

l'ktRecvWdw • 256 
I 

01 + 
Ack Rcquc.sl 

I 

PktFirsi0)1C5<.'q = 0 
PktNcxtRccvScq • 256 

PktRecvWdw • 256 

I 

0 1 + 
Ack Request 

I 
FirstRtnuScq • 0 Probe timer expires. Probe timer expires. 

ScndSeq • 0 
SendWdwSeq • 511 

RecvScq • 0 FirstRtmtSeq • 256 
SendScq • 256 ScndWdw&xt • 5 II 

RecvSeq = 0 

12-18 CHAPTER 12 AppleTalk Data Stream Protocol 

PktFirst0)1eSeq • 0 
PktNcxtRecvSeq • 256 

PktRecvWdw • 256 

I 

Ctl 
Ack Request 

I 
Probe timer expires. 

Time 

T1mc 



• Figure 12-6 Connection rom down due to lost packets 

PktFirstDytcSeq = 0 
PkL'iextRecvScq • 256 

PktRecvWdw = 256 
I 

PktFirstByteSeq = 0 
Pkt ·cxtRecvSeq = 256 

PktRct·vWdw = 256 

I 

PktFirstl3yteScq • 0 
PktNextRecvSeq • 256 

PktRecvWdw = 256 

I 

PktFirst l3)1eSeq • 0 
PktNextRccvSeq • 256 

PktRecvWdw • 256 
I 

Connection 
is closed. 

Connection 
end B ~ ................ ~ ........................ ~ ........................ ~ ........................ ~----------------~~ Time 

\ \ \ \ 
Ctl Ctl Ctl Ctl 

\ Clm;•~:.re (0:255) + Ctl + \ Ctl- \ Ctl + 
Ack Request Ack Request Ack Request Ack Request 

X X 
Connection 

end A 

~ I I I I I Lost Lost 

~ ........................................................................................................................ ~~ Time 
FirstRtmtSeq • 0 

SendSeq • 0 
SendWdwScq • S11 

Reo•Scq • 0 
ScndSeq • 2S6 

Probe timer expires. 

FirstRtmtSeq • 256 
SendWdwSeq • 51 1 
Ret·vSeq = 0 

Attention messages 

Probe timer expires. Probe timer expires. Probe timer expires; 
connection is closed. 

Attention messages provide a method for the clients of the two connection ends to signal each 
other outside the normal flow of data across the connection. ADSP attention messages are 
delivered reliably, in order, and free of duplicates. 

ADSP Attention packets are used for delivering and acknowledging attention messages. 
Figure 12-7 shows an ADSP Attention packet. The Attention bit is set in the packet's ADSP 
descriptor field to designate an Attention packet. The data part of an Attention packer contains a 
2-byte (16-bit) attention code and from 0 to 570 bytes of client attention data. 

The 16-bir attention-code field accommodates a range of values from $0000 through $FFFF. 
Values in the range $0000 through $EFFF are for the client's use. Values in the range $FOOO through 
$FFFF are reserved for potential future expansion of ADSP. 

Attention messages 12-19 



• Figure 12-7 ADSP Attention packet format 

~·'~ { header 

DDP header 

ADSP header 

Anent ion 
message 

I ' byte (8 bits)~ 

I 
• • • 

• • • 

t-

~ 

r-

r-

r-

~ 

t-

t-

t-

• • • 

DDP type= 7 

Source 
ConoiD 

PktAHnSendSeq 

Pk!AttnRec\'Seq 

PkL"-HnRl'CVWdw • 0 

ADSP descriptor 

AunCode 

Ann Data 
(0 !0 570 b)~CS) 

I 
• • • 

I 
• • • 

-

-

-

-

-

-

-

-

-

• • • 

12-20 CHAP T E R 12 AppleTalk Data Stream Protocol 



Attention messages use a packet-oriented sequence-number space that is independent of data
stream sequence numbers. The first Attention packet is assigned a sequence number of 0, the 
second packet is assigned I, the third packet 2, and so on. Attention sequence numbers are treated 
as 32-bit unsigned integers that wrap around to 0 when increased by 1 beyond the maximum value 
$FFFFFFFF. 

End B maintains a variable, AttnRecvSeq, which contains the sequence number of the next 
attention message that end B expects to receive from end A. AttnRecvSeq is initially set to 0 and is 
increased by 1 with each attention message that end B accepts from end A. 

End A maintains a corresponding variable, AttnSendSeq, which contains the sequence number 
of the next attention message it will send across the connection. When end A is first established, 
AttnSendSeq is synchronized to the value of end B's AttnRecvSeq. 

In any Attention packet sent from end A to end B, the PktAttnSendSeq field of the ADSP 
packet header contains the current value of end A's AttnSendSeq. In any Attention packet sent 
from end B to end A, the PktAttnRecvSeq field contains the current value of end B's AttnRecvSeq. 
Upon receiving an Attention packet, end A uses the value of PktAttnRecvSeq to update its own 
AttnSendSeq. Before updating AttnSendSeq, end A must ensure that the value of PktAttnRecvSeq 
equals AttnSendSeq+ 1. If these values are equal, end A increases AttnSendSeq to equal 
PktAttnRecvSeq. 

Attention data is received into buffer space other than the receive queue in an implementation
dependent manner. End A can send an attention message even if end B's receive window in the 
regular data stream is closed. However, only one attention message can be outstanding at a time. 
Once end A sends an attention message to end B, end A cannot send another attention message 
until it receives an acknowledgment from end B. End B accepts and acknowledges receipt of an 
attention message if the attention message is properly sequenced and if buffer space is available. If 
buffer space is not available, end B discards the attention message. Because only one attention 
message can be sent at a time, the PktAttnRecvWdw field of ADSP attention-packet headers is not 
used and must always be set to 0. 

When sending an attention message, the end starts a timer. If the timer expires, the end 
retransmits the attention message and restarts the timer. The sending end continues to retransmit 
the attention message until it receives the appropriate attention-message acknowledgment or until 
the connection is tom down. 

When end A sends an attention message to end B, end A's PktAttnSendSeq field is set to the 
value of end A's AttnSendSeq. When end B receives the Attention packet, it compares the value of 
PktAttnSendSeq with its own AttnRecvSeq. If the values are not equal, end B discards the 
attention message. If the values are equal and buffer space is available, end B accepts the data and 
increases AttnRecvSeq by 1. Then end B sends end A an attention acknowledgment with the 
PktAttnRecvSeq field set to the current value of end B's AttnRecvSeq. 

Attention messages 12-21 



An acknowledgment is implicit in any Attention packet sent; that is, acknowledgments are 
piggybacked on attention messages. The attention acknowledgment itself may be an attention 
message that end B's client has just asked end B to send, or the acknowledgment may be an ADSP 
Control packet whose sole purpose is to acknowledge the attention message. 

Connection opening 

This section describes how connections are opened and explains some of the facilities that ADSP 
provides for opening connections. 

A connection is open when both ends of the connection are established. A connection end is 
established when it knows the values of all of the following parameters: 

Parameter 

LocAddr 

RemAddr 

LocConniD 

RemConniD 

SendSeq 

FirstRtmtSeq 

SendWdwSeq 

RecvSeq 

RecvWdw 

AttnSendSeq 

AttnRecvSeq 

Description 

the internet address of the local end's socket 

the internet address of the remote end's socket 

the local end's ConniD 

the remote end's ConoiD 

the sequence number to be assigned to the next byte that the local end's ADSP 
will send over the connection to the remore end 

the sequence number of the oldest byte in the local end's send queue (Initially, 
the queue is empty so this number equals SendSeq.) 

the sequence number of the last byte that the remote end has buffer space to 
receive from the local end 

the sequence number of the next byte that the local end expects to receive from 
the remote end (Initially, this number is set to 0.) 

the number of bytes that the local end currently has buffer space to receive from 
the remote end (Initially, the local end's entire receive buffer is available.) 

the sequence number to be assigned to the next Attention packet that the local 
end will transmit over the connection 

the sequence number of the next Attention packet that the local end expects to 
receive from the remote end (Initially, this number is set to 0.) 

12-22 CHAP T E R 12 AppleTalk Data Stream Protocol 



When attempting to become established, the local end knows the values of LocAddr, LocConniD, 
RecvSeq, RecvWdw, and AttnRecvSeq. (When a connection is first opened, the values of RecvSeq and 
AttnRecvSeq will be 0.) The local end must somehow discover the values of RemAddr, RemConniD, 
SendSeq, SendWdwSeq, and AttnSendSeq. The objective of the connection-opening dialog is for each 
end to discover these values. 

+ Note: A connection can be opened in a variety of ways. ADSP provides one mechanism, but a 
client can use its own separate, parallel mechanism to discover and provide the required 
information to ADSP in order to establish either or both connection ends. 

In order to open a connection, ADSP provides a type of Control packet known as an Open 
Connection Request Control packet. Since the Control packet is an ADSP packet, its header contains 
the sending end's network address and ConniD. In addition, the packet includes the sending end's 
RecvSeq (PktNextRecvSeq in the packet header) and RecvWdw (PktRecvWdw in the packet header). 
The end obtains the value of AttnRecvSeq from one of a set of fields in the packet, collectively 
known as the open-connection parameters. 

The end initiating the connection-opening dialog sends an Open Connection Request Control 
packet to the intended remote end. This packet provides the remote end with the connection 
parameters it needs to become established. Upon receiving such a packet, the remote end sets its 
connection parameters as follows: 

Parameter 

RemAddr 

RemConniD 

SendSeq 

SendWdwSeq 

AttnSendSeq 

Description 

equal to the packet's source network address 

equal to the packet's source ConniD 

equal to PktNextRecvSeq 

equal to PktNextRecvSeq+PktRecvWdw-1 

equal to PktAttnRecvSeq 

Once the remote end has set these parameters (based on the information in the Open Connection 
Request Control packet), the end is considered to be established. 

In order for a connection to become open, both ends of the connection must be established. 
Therefore, in the connection-opening dialog, each end must send an Open Connection Request 
Control packet to the other end (as well as receive an Open Connection Request Control packet from 
the other end). 

Connection opening 12-23 



Since these packets can be lost during transmission, ADSP provides a mechanism for ensuring 
that the packets are delivered. When a connection end receives an Open Connection Request Control 
packet, the receiving end returns an Open Connection Acknowledgmem Control packet to the 
sending end. Upon receiving an Open Connection Acknowledgment Control packet, the receiving 
end is assured that the other end has become established. 

After the two connection ends have exchanged both open-connection requests and 
acknowledgments, the connection is open and data can safely be senr on it. 

Connection-opening dialog 

The connection-opening mechanism provided by ADSP requires that a connection end must know 
the internet socket address of the destination socket to which the end is making a connection 
request. The client must provide this address to ADSP for the purpose of initiating the connection
opening dialog. How this address is determined is up to the client; generally, the AppleTalk Name 
Binding Protocol (NBP) is used. 

The ADSP connection-opening mechanism is a symmetric operation. Either of two peer clients 
can initiate the connection-opening dialog. In fact, both peers can attempt to open the connection 
at the same time; however, only one connection between the two peers should be opened. The 
following discussion focuses on how end A opens a connection with end B. 

When attempting to open a connection with a remote end B, end A first chooses a locally 
unique ConniD. End A then sends an Open Connection Request Control packet to end B's socket 
address. This request contains end A's initial connection-state information (irs LocConniD, RecvSeq, 
RecvWdw, and AttnRecvSeq). End B needs this information in order to become established. 

Upon receiving the Open Connection Request Control packet, end B extracts the sender's 
internet socket address and source ConniD and saves them in its RemAddr and RemConniD fields, 
respectively. The value of the PktNextRecvSeq field is saved as end B's SendSeq. End B then adds 
the value of PktRecvWdw-1 to PktNextRecvSeq to produce its SendWdwSeq. Finally, the value of 
PktAttnRecvSeq is saved as end B's AttnSendSeq. Connection end B is now established. 

At this point, end A is not established and does not know the state of connection end B. End B 
responds to end A's Open Connection Request Control packet by sending back an Open Connection 
Request and Acknowledgment Control packet. End A determines the values of its RemAddr, 
RemConniD, SendSeq, and SendWdwSeq from the open-connection request, as previously described; 
then, end A becomes established. The open-connection acknowledgment informs end A that end B 
has accepted end A's Open Connection Request Control packet and has become established. End A 
assumes the connection is now open. 

12-24 C HAP T E R 12 AppleTalk Data Stream Protocol 



End A informs end B of its state by sending an Open Connection Acknowledgment control 
packet. Upon receiving the acknowledgment, end B assumes the connection is open (see 
Figure 12-8). 

Both ends can anempt to open the connection simultaneously. In this case, each ADSP socket 
receives an Open Connection Request Control packer from the socket to which it has sent an Open 
Connection Request Control packet. The ADSP implementation identifies end A by matching its 
RemAddr to the source address of the Open Connection Request Control packet received from end 
B. End A extracts the required information from the packet and becomes established. End A then 
sends back an Open Connection Acknowledgment Control packet to inform the remote end that it 
has become established. This ensures that ADSP establishes only one connection between the two 
sockets (see Figure 12-9). 

• Figure 12-8 Connection-opening dialog initiated by one end 

Connection 
end B 

Connection 
end i\ 

TI1is end is cst:thlished. 

I 
·n1is end assumes 
connection is open. 

I 

'--------~--:------------~> Time 

"~"''" I 
(Request) (r\ck) 

I I 
'-----------------------> Time 

This end initiates This end is established; this end 
connection·opening dialog. assumes connection is oren. 

Connection opening 12-25 



• Figure 12-9 Connection-opening dialog initiated by both ends 

Connection 
end 13 

Conneclion 
end A 

This end is eslablished. 

TI1is end ini1ia1es 
conncaion-opening 
dialog. 

This end assumes 
conncaion is open. 

I 

'-------:----------:---~----> Time 

\ \ 

'-----------------------...... > Time 

TI1is end ini1ia1cs 
connt'Ciion-opening 
dialog. 

This end is cslablishcd. 

TI1is end assumes 
conncc1ion is open. 

If for any reason an ADSP implementation is unable to fulfill the open-connection request, an 
open-connection denial is sent back to the requester. In this case, the source Conn!D field of the 
ADSP packet header is 0, while the destination Conn!D field of the connection-opening parameters 
is set to the requester's Conn!D (see Figure 12-1{}). 

12-26 CHAP T E R 12 AppleTalk Data Stream Protocol 



• Figure 12-10 Open-connection request denied 

TI1is ADSP docs not 
<tecept the request. 

I 
Remote 

ADSP ._~\ ->TUne 

(Dcnili) 

(Request) 

Connection 
end A 

I 
'---------------------~> Time 

'!11is end initiates 
conncction·opcning dialog. 

This end returns 
status to diem. 

Open-connection Control packet format 

An open-connection request is sent as an ADSP Control packet. As such, the request contains all the 
information required to establish the receiving end. ADSP is a client of the network layer, DDP, 
which contains the internet address of the sender. (Note that the packet must be sent through the 
socket on which the connection is to be established.) The ADSP header contains the source ConniD, 
RecvSeq, and RecvWdw, which are used to determine the receiving end's RemConniD, SendSeq, and 
SendWdwSeq, respectively. The AttnRecvSeq field of the open-connection parameters following 
the header is used to set the value of the receiving end's AttnSendSeq. 

An ADSP Open Connection Acknowledgment, which is also a Control packet, serves to 
acknowledge the receipt of an Open Connection Request Control packet. An end can send both an 
Open Connection Request Control packet and an Open Connection Acknowledgment Control packet 
at the same time by combining them into one ADSP Control packet. ADSP also provides an Open 
Connection Denial Control packet for use when a connection request cannot be honored. In the 
Open Connection Denial Control packet, the source ConniD should be set to 0 in the packet header. 

Connection opening 12-27 



Figure 12-11 shows the fonnat of ADSP packets that are used in the connection-opening 
dialog. Note the special open-connection parameters that follow the ADSP packet header. These 
parameters are described in detail after the figure. 

The first field of the open-connection parameters is the 16-bit ADSP version field. In any open
connection packet, the ADSP version should be set to the protocol version of the ADSP 
implementation that sent the packet. An ADSP implementation must deny any open-connection 
request that has an incompatible ADSP version. This chapter documents ADSP version $0100; all 
other values are reserved by Apple for potential future expansion of the protocol. 

The 16-bit destination ConniD field of the open-connection parameters is used uniquely to 
associate an open-connection acknowledgment or denial with the appropriate open-connection 
request. The destination ConniD field of any Open Connection Acknowledgment Control packet or 
Open Connection Denial Control packet should be set to the source ConniD of the corresponding 
open-connection request. When an end sending an Open Connection Request Control packet does 
not know the ConniD of the remote end, the destination ConniD field in the packet must be set 
to 0. 

The 32-bit PktAttnRecvSeq field of the open-connection parameters contains the sequence 
number of the first Attention packet that the sending end is willing to accept. This value is equal to 
the sending end's AttnRecvSeq variable. 

The following table summarizes the packet-descriptor values and ConniDs that should be used 
with each of the open-connection control messages. 

ADSP packet 
Control packet descriptor Source ConoiD Destination ConniD 

Open Connection Request $81 LocConniD 0 

Open Connection Ack $82 LocConniD RemConniD 

Open Connection Request+Ack $83 LocConniD RemConniD 

Open Connection Denial $84 0 RemConniD 

12-28 CHAP T E R 12 AppleTalk Data Stream Protocol 



• Figure 12-11 

DDP header 

ADS!' header 

Open-connection 
parameters 

Open-connection packet fonnat 

,_, byte (8 bits)~ 

I I 
• • • • • • 

DDP type= 7 

- Source ConnlD -

- -

f- PktFirstllyteSeq -

r- -

f- -

t- PktNextRecvSeq -

r- -

r- PktRecvWdw -

ADSP descriptor 

r- ADSP version· 50100 -

f- Destination ConnlD -

t- -

t- PktAtnRecvSeq -

t- -

Connection opening 12-29 



Error recovery in the connection-opening dialog 

Since delivery of packets sent by the network layer is not guaranteed, connection-opening packets 
can be lost or delayed. Therefore, ADSP open-connection requests should be retransmitted at 
intervals specified by the client (for a maximum number of retries also specified by the client). An 
end receiving an open-connection request must ensure that it is not a duplicate by comparing the 
request's source ConniD and address with that of all open or opening connections for the receiving 
socket. If the request is a duplicate, the appropriate acknowledgment is still sent back. See Figure 
12-12and Figure 12-13, where X indicates lost or delayed packets. 

• Figure 12-12 Connection-opening dialog: packet lost 

This end i~ established; 
open timer starts. 

Open timer restans. 

I 
Open timer expires. 

I 
TI1is end assumes 
connet1ion is open. 

I I 
Connection 

end 13 Time 

X \ \ x\ 
I (Request + Ack) (Request t Ack) I (Reqwst + Ack) 

(Request) (Rt'qUCSt) \ (Request) (Ack) (Ack) 

X I I I I I 
Connt'Ction I 

end A '------------------------------->Time 

This end initiates 
connection·opcning 
dialog; open timer starts. 

Open timer expires. Open timer expires. This end is established; this end 
;:1~umes connf"("lion is opt:n. 

12-30 C H APT E R 12 AppleTalk Data Stream Protocol 



• Figure 12-13 Simultaneous connection-opening dialog: packet lost 

Connection 
end D 

Connection 
end A 

This end initiates 
conneaion-opcning 
dialog; open timer st:trts. 

I 

X \ I (Request) 

(Request) 

\ 
( Ack) 

This end initiates This end is established. 
connection-opening 
dialog; open timer starts. 

This end is established; 
this end assumes 
connection is open. 

(Request + Ack) 

Open timer expires. 

\ 
(Ack) 

This end assumes 
connection is open. 

If either end goes down or becomes unreachable during the connection-opening dialog, one end 
can become established while the other end does not This results in a half-open connection. When 
this situation occurs, the open end is closed through normal ADSP mechanisms, as shown in 
Figure 12-14. 

Time 

Time 

Connection opening 12-31 



• Figure 12-14 Connection-opening dialog: half-open connection 

Connection 
end 8 

This end is established; 
open timer stans. 

I 

\ 
(Request + Ack) 

Open timer expires. 

I 
Open timer expires. 

I 

Open timer expires: 
retries exhausiCd; 
connection is closed. 

x\ x\ X X X 
I "''"''" "" I ""~" "'" I I I 

'"'""'' (A<kl \ """"' \ (i'robo) (Probe) (CI= Ad•ire) 

Time 

Connw ion 
end A 

I I x1 x1 I I 
'-------------------------------,> Time 

This end init iates 
connection-opening 
dialog; open timer stans. 

This end established: this end 
assumes connection is open; 
probe timer stans. 

Probe timer expires. Probe timer expires. 

Probe timer expires. 

Probe timer expires: 
connection is closed. 

Figure 12-15 shows that it is possible for one end to become established while the other is still 
opening. In this case, the connection is half open. End A can begin to send Data packets, but end B 
will discard the packets because the connection is not yet open (end B has not yet received 
acknowledgment that end A has become established). 

End B will retransmit its open-connection request and, upon receiving the request, end A will 
compare the value of PktFirstByteSeq to its own RecvSeq. If the values are equal, end A has not yet 
received any data from end B; end A assumes the connection is not yet open, sends back an open
connection acknowledgment with PktFirstByteSeq equal to its FirstRtmtSeq, and then retransmits 
the data (see Figure 12-15). 

12-32 CHAP T E R 12 AppleTalk Data Stream Protocol 



• Figure 12-15 Connection-opening dialog: data transmitted on half-open connection 

Connection 
end ll 

Connection 
end A 

Packet is discarded. 
ThL~ end i~ establishe-d. 

I Oln timer stans. Open timer rest:Irls. 

I 

Packet is discarded. 
This end assume; 
connection is open. 

I 

'------:--:---------------:--:-----------.> Time 

,~~ . A<kl r I "~ . ,,., I 
7"' \ l' ll \ ll 

1.------------------------------------,> Time 

This end initiates 
connection-opening 
dialog; open timer stans. 

Thi~ end is cs1ablished: 
thi> end as.-;umcs 
conncClion is open. This end sends data. 

Da~1 is retrJnsmincd. 

If PktFirstByteSeq does not equal RecvSeq, end A can assume that the connection is open 
because end A has received data from end B; therefore, the open-connection request must be a late
arriving duplicate and is discarded (see Figure 12-16). 

Connection opening 12-33 



• Figure 12-16 Connection-opening dialog: late-arriving duplicate 

Titis end is established; this end 
assumes connection is open. 

Open timer stans. 

I 
Open timer expires. 

I 
Open tinT expires. I Titis t nd sends data. 

Connection 
end B 

Connection 
end A 1.....---------------------------------> Time 

This end initiates 
connecti<m·opening 
dialog; open timer stans. 

Titis end is established: this end 
assumes connection is open. 

Connection opening outside of ADSP 

Packet is discarded. 

The preceding discussion focused on one typical connection-opening situation: the opening of a 
connection between two specific peer sockets. Although this example illustrates and defines the 
connection-opening concepts and facilities in ADSP, a connection can be opened in other ways. For 
example, each of the two clients of ADSP may know the connection-opening information of the 
other end based on an established convention between these clients. In this situation, each client 
makes a call to its local ADS~ to set up the connection, providing the necessary connection-opening 
parameters. At each end, the ADSP implementation assumes the connection is open. 

12-34 CHA P T E R 12 AppleTalk Data Stream Protocol 



In a variation of this situation, the two ADSP clients exchange the required connection-opening 
information via an independent channel, and then each client calls its local ADSP, as previously 
described, to open the connection. 

In both of these cases, ADSP makes no attempt to send any connection-opening packets to 
the other end; the underlying assumption is that the cooperating clients have adequately 
synchronized the parameters before calling their respective ADSP implementations. 

Connection-listening sockets and servers 

A common situation involves one or more clients opening connections to a server. The server sets 
up a connection-listening socket to which the server's clients send their ADSP open-connection 
requests. 

A connection-Dstening socket is a socket that accepts open-connection requests and 
passes them along to its client (the server process) for further processing. In general, the client then 
selects a socket and requests ADSP to establish a connection end on that socket. The client passes 
to ADSP the information from the received open-connection request (that is, the sender's socket 
address, source ConniD, RecvSeq, RecvWdw, and AttnRecvSeq). ADSP continues the open
connection dialog, sending an Open Connection Request and Acknowledgment Control packet to 
the specified remote end. 

No restriction defines the socket that the server process picks for the connection end; the 
socket could be the connection-listening socket itself, another socket on the same node, a socket 
on another node in the same network, or a socket on a node in another network. If the socket is on 
a node different from the connection-listening socket, then the server must use its own process 
(outside of ADSP) to convey the call to the target node's ADSP implementation. The client must be 
aware of the possibility of duplicate open-connection requests and should f01ward such requests 
to ADSP, specifying the same connection end (see Ftgure 12-17). 



• Figure 12-17 Open-connection request made to connection-listening socket; alternate socket 
chosen for connection 

l11is end is established. 

Connection 
end B '----------------> Time 

,----------'-~-'> Time W~>', A<kl 
Connection-listening 

socket 

Connection 
end A 

I 
(Request) 

Connection-opening ftlters 

Time 

This end is established. 

The ADSP client may need to be selective about establishing connections with remote clients; the 
addresses of some remote clients that make open-connection requests may not be acceptable to 
the local client. In order to establish a selection criterion, the client can provide ADSP with a filter of 
valid network addresses with which it is willing to establish connections. This filter could be as 
'>imple as specifying "open a connection only with the socket to which you are sending the open-

,nection request" or "open a connection only with a socket on a particular node." If ADSP 
·es an open-connection request from an address that does not match the filter, it sends back 

·connection denial and ignores the packet (see Figure 12-18). 

~11-;C., 

,s-'h / Talk Data Stream Protocol 



• Figure 12-18 Connection-opening filters: open connection denied 

Connection 
end 0 

Connet1ion 
end A 

Address of conn~ction 
end A does not pass the 
ftlter: denial is returned. 

'--------------------,> Time 

\ 
(Request) 

This end initiates 
connection-opening 
dialog: open timer stans. 

(Denial) 

This end returns 
status to client. 

Time 

In the case of a connection-listening socket, the end could conceivably become established 
with a different network address than the one to which the original open request was sent. The 
new address may not be acceptable to the original requester. In this case, the original requester can 
provide ADSP with a filter of network addresses with which it is willing to establish a connection 
(see Figure 12-19). 

Connection opening 12-37 



• Figure 12-19 Connection-opening filters with a connection-listening socket 

Connection-listening 
socket 

Connection 
end B 

Titis end returns 
status to client 

(Denial) 

Connection 
end A '------------------------,> Time 

Connection closing 

Address of end B 
does not pass the 
filter, denial is sent 

An ADSP connection is closed under one of two circumstances. The first circumstance occurs when 
either end determines that the other end is not responding to repeated probes. In this event, ADSP 
immediately closes the remote connection end and notifies the local end's client that the 
connection is closed. 

The second circumstance occurs when either client calls ADSP to close the connection. An ADSP 
client can make this call at any time. Typically, the local connection end's ADSP awaits 
acknowledgment of the delivery of any outstanding bytes in its send queue before closing the 
connection. 

12-38 C H A P T E R 12 Apple Talk Data Stream Protocol 



Before closing an open connection, ADSP sends a Close Connection Advice Control packet to 
the remote end. The packet is sent as a courtesy, and its delivery is not guaranteed. If the packet is 
not successfully delivered to the remote end, the remote end will eventually time out and tear 
down. 

+ Note: Since the close-connection advice message is sent as an ADSP Control packet, 
no data can accompany it. 

Upon receiving a Close Connection Advice Control packet, an ADSP connection end verifies that 
the packet is sequenced properly. If the packet has arrived early, the receiving end may discard or 
buffer it until any intervening data packets have arrived. This action avoids prematurely closing the 
connection while data packets are delayed in internet routers. If the Close Connection Advice 
Control packet is acceptable, ADSP immediately closes the connection and infonns the client of the 
change in status. 

Occasionally, clients need to inform each other reliably that they have completed their 
conversation and are ready to close the connection. This process can be accomplished if each end 
sends an attention message to the other end indicating that it has sent and received 
acknowledgment of all of its data. Upon completing this handshake, each end can safely issue a call 
to its local ADSP to close the connection. 

Connection closing 12-39 



Part V End-User Services 

P A R T V of Inside Apple Talk describes the protocols that provide end-user 
services in an Apple Talk network. This part includes a complete description of 
the AppleTalk Filing Protocol (AFP). It also includes the architectural 
specification for print spooling in an AppleTalk network. • 



Chapter 13 AppleTalk Filing Protocol 

CONTENTS 

File system structure I 13-7 
File server I 13-8 
Volumes I 13-9 

Volume types I 13-10 
Volume catalog I 13-12 

Catalog node names I 13-13 
Directories and ftles I 13-15 

Directory IDs I 13-15 
Directory parameters I 13-16 
File parameters I 13-17 
Date-time values I 13-21 

File forks I 13-22 

Designating a path to a CNode I 13-23 

AFP login I 13-27 

File server security I 13-28 
User authentication methods I 13-28 

No user authentication I 13-29 
Cleartext password I 13-29 
Random number exchange I 13-29 

Volume passwords I 13-30 
Directory access control I 13-31 

File sharing modes I 13-35 
Access modes and deny modes I 13-35 
Synchronization rules I 13-36 

Desktop database I 13-37 

13-1 



AFP's use of ASP I 13-38 

An overview of AFP calls I 13-39 
Server calls I 13-40 
Volume calls I 13-41 
Directory calls I 13-42 
File calls I 13-43 
Combined directory-ftle calls I 13-43 
Fork calls I 13-44 
Desktop database calls I 13-45 

AFP calls I 13-46 
FPCall I 13-48 
FP AddAPPL I 13-49 
FPAddComment I 13-51 
FPAddlcon I 13-53 
FPByteRangeLock I 13-55 
FPChangePassword I 13-58 
FPCloseDir I 13-60 
FPCloseDT I 13-61 
FPCloseFork I 13-62 
FPdoseVol I 13-63 
FPCopyFile I 13-64 
FPCreateDir I 13-67 
FPCreateFile I 13-69 
FPDelete I 13-71 
FPEnumerate I 13-73 
FPFlush I 13-77 
FPFlushFork I 13-78 
FPGetAPPL I 13-79 
FPGetComment I 13-81 
FPGetFileDirParms I 13-83 
FPGetForkPanns I 13-89 

13-2 C H APT E R 13 AppleTalk Filing Protocol 



FPGetlcon I 13-91 
FPGetlconlnfo I 13-93 
FPGetSrvrlnfo I 13-95 
FPGetSrvrParms I 13-98 
FPGetUserlnfo I 13-100 
FPGetVolParms I 13-102 
FPLogin I 13-104 
FPLoginCont I 13-106 
FPLogout I 13-108 
FPMapiD I 13-109 
FPMapName I 13-110 
FPMoveAndRename I 13-111 
FPOpenDir I 13-114 
FPOpenDT I 13-116 
FPOpenFork I 13-117 
FPOpenVol I 13-121 
FPRead I 13-123 
FPRemoveAPPL I 13-126 
FPRemoveComment I 13-128 
FPRename I 13-130 
FPSetDirParms I 13-132 
FPSetFileDirParms I 13-135 
FPSetFileParms I 13-138 
FPSetForkParms I 13-141 
FPSetVolParms I 13-143 
FPWrite I 13-145 

• 

AppleTalk Filing Protocol 13-3 



THE P U R P 0 S E of the Apple Talk Filing Protocol (AFP) is to allow 

workstation users to share files. Sharing files across a network requires that 

the user application know·where and how to fmd a file. This chapter 

introduces the file access model used by AFP to enable file sharing and 

discusses the components of AFP software. 

The AFP file access model is shown in Figure 13-1, which illustrates the 

discussion that follows. • 

13-4 C H A PTE R 13 AppleTalk Filing Protocol 



• Figure 13·1 The AFP file access model 

Workstation File server 

r 

AFP calls ~ AFP file File seJVer 
system control program 
calls 

Program 
Network 

Local file AFP }-v -
Native system translator Native file 

file system system 

commands commands 
Native Filing 
Interface (NFI) 

ApplcTalk Filing 
Interface (AFI) [local file] 

system 

' 
J, J I' 
J. J, 

Volumes 

A program running in a workstation (the workstation client or AFP client) requests and 
manipulates files by using the workstation's native file system commands. These commands 
manipulate files on a diskette or other memory resource that is physically connected to the 
workstation (a local resource). Through AFP, a workstation program can use the same native file 
system commands to manipulate files on a shared memory resource that resides on a different 
node (a remote resource). 

Volumes 

A workstation program sends a file system command through the Native Filing Interface 
(NFI) in the workstation. A data structure in local memory indicates whether the volume is 
managed by the native ftle system or by some external file system. The native file system discovers 
whether the requested file resides locally or remotely by looking at this data structure. If the data 
structure indicates an external ftle system, the native file system then routes the command to the 
AFP translator. 

The translator, as its name implies, translates the native commands into AFP calls and sends 
them through the AppleTalk Filing Interface (AFI) to the file server that manages the remote 
resource. 

The AFP specification defines the AFI part of the file access model. The translator is not 
defmed in the AFP specification; it is up to the applications programmer to design it. 

I 

AppleTalk Filing Protocol 13·5 



A workstation program may need to gain access to the AFI directly because the program needs 
to make an AFP call for which no equivalent command exists in the native ftle system. For example, 
user authentication might have to be handled through an interface written for that purpose. In 
Figure 13-1, the line leading directly from the program to the AFI illustrates such AFP calls. 

Any implementation of AFP must take into account the capabilities of the networked 
workstation's native file system and simulate its functionality in the shared environment. In other 
words, the shared file system should duplicate the characteristics of a workstation's local file 
system. Simulating the functionality of each workstation's native file system becomes increasingly 
complex as different workstation types share the same file server. Because each workstation type 
has different characteristics in the way it manipulates files, the shared file system needs to possess 
the combined capabilities of all workstations on the same network. 

Three system components make up AFP: 

• a file system structure 

• AFP calls 

111 algorithms associated with the calls 

The first component, the AFP file system structure is made up of resources (such as file servers, 
volumes, directories, files, and forks) that are addressable through the network. These resources are 
called AFP-me-system-visible entities because they are visible through the AFI. In other 
words, the translator can send commands through AFI to manipulate them. 

AFP specifies the relationship between these entities. For example, one directory can be the 
parent of another. (For descriptions of AFP-file-system-visible entities, see "File System Structure" 
later in this chapter.) 

AFP calls, the second component, are the commands the workstation uses to manipulate the 
AFP file system structure. As mentioned earlier, the translator sends file system commands to the 
file server in the form of AFP calls, or the workstation application can make AFP calls directly. (See 
"AFP Calls" later in this chapter.) 

The third software component of AFP is the set of algorithms associated with AFP calls. These 
algorithms specify the actions performed by the calls. 

AFP supports Macintosh computers, Apple II computers running ProDQS®, and personal 
computers using MS-DOS. AFP can be extended to support additional types of workstations. 

Although this chapter distinguishes between workstations and file servers, AFP can support 
these two functions within the same node. However, AFP does not solve the concurrency 
problems that can arise in a combined workstation-server node. The software on such combined 
nodes must be carefully designed to avoid potential conflicts. 

13-6 C H A P T E R 13 AppleTalk Filing Protocol 



AFP does not provide calls that support administration of the ftle server. Administrative 
functions, such as registering users and changing passwords, must be handled by separate 
network-administration software. Additional software must also be provided to add, remove, and 
find servers within the network. 

AFP Version 1.0, which was never released, was developed as a joint effort between Apple 
Computer, Inc. and Centram Systems West. This chapter describes AFP Versions 1.1 and 2.0. AFP 2.0 
provides certain extensions to AFP 1.1; these extensions will be pointed out in the following 
sections. Unless otherwise noted, all information herein applies to both versions. 

Figure 13-2 shows AFP within the Apple Talk protocol architecture. 

• Figure 13-2 AFP and the AppleTalk protocol architecture 

AppleTalk Filing Protocol 
(AFP) 

ApplcTalk Se ion Prolocol 
(ASPJ 

Da1agmm Delivery Prmocol 
(1)[)1') 

Dala link 

File system structure 

This section describes the AFP file system structure and the parameters associated with its 
AFP-file-system-visible entities. These entities include the file server, its volumes, directories 
("folders" in Macintosh terminology), files, and file forks. This section also describes the tree 
structure, called the volume catalog, which is a description of the relationships between 
directories and files. 

File system structure 13-7 



By submitting AFP calls, the workstation client can 

• obtain information about the file server and other parts of the file system structure 

• modify this information 

• create and delete files and directories 

• retrieve and store information within individual files 

The following sections describe the file system structure's AFP-file-system-visible entities. 

File server 

A file server is a computer with at least one large-capacity disk that allows other computers on 
the network to share the information stored in it. The maximum number of disks is not limited by 
AFP. Each disk attached to a me server usually contains one volume, although the disk may be 
subdivided into multiple volumes. Each volume appears as a separate entity to the workstation 
client. 

A file server has a unique name and other identifying parameters. These parameters identify the 
server's machine type and number of attached volumes, the AFP versions that the server can 
understand, and the user authentication methods (UAMs) that the server supports. AFP file 
server parameters are listed below. 

Parameter 

server name 

server machine type 

number of volumes 

AFP version strings 

UAM strings 

server icon 

Description 

string of up to 32 characters 

string of up ro 16 characters 

2-byte integer 

strings of up to 16 characters each 

strings of up to 16 characters each 

256 bytes 

13-8 CHAPTE R 13 AppleTalk Filing Protocol 



+ Note: Unless mentioned otheiWise, all numerical values are signed numbers. AFP strings can 
be up to 255 characters long and are case-insensitive and diacritical-sensitive. Strings appear in 
what is commonly called Pascal format; that is, a length byte followed by the same number 
of characters. The string "hello" would be encoded as 05 "h" "e" "I" "I" "o". A string of up to 
16 characters would require up to 17 bytes to encode (1 byte for the length and up to 16 
bytes of characters). The character-code mapping is as defmed in Appendix D. All date-time 
parameters are signed 4-byte integers representing the number of seconds measured from 
12:00 A.M. on january 1, 2000. 

In this section, strings, file creators, and file types are shown in monospaced font enclosed 
by single quotes (for example, 1 B3 1 

). The single quotes are delimiters and are not part of 
the string, ftle creator, or file type. 

The server machine-type string is purely informative, providing text that describes the file 
server's hardware and software; it has no significance to AFP. 

For descriptions of AFP version strings and UAM strings, see "AFP Login" later in this chapter. 
The server icon is optional and is used to customize the appearance of server volumes on a 

Macintosh Desktop. It consists of a 32-by-32 bit (128 bytes) icon bitmap followed by a 32-by-32 bit 
(128 bytes) icon mask. The mask usually consists of the icon's outline filled with black (bits that are 
set). This format fits the specification of icons for a Macintosh (for more information about icons, 
refer to Inside Macintosh). 

Figure 13-1 illustrates a file server with two attached volumes. 

Volumes 

A file server can have one or more volumes that are visible to workstations through the AFI. Each 
volume has identifying parameters associated with it, as listed below. To provide security at the 
level of each volume, the server can also maintain an optional password parameter. 

File system structure 13-9 



Parameter 

volume name 

volume signature 

volume identifier 

volume creation date-time 

volume modification date-time 

volume backup date-time 

volume size (in bytes) 

free bytes on volume 

volume password (optional) 

Description 

string of up to 27 characters 

2 bytes 

2 bytes 

4 bytes 

4 bytes 

4 bytes 

4-byte unsigned long integer 

4-byte unsigned long integer 

8 bytes 

The volume name identifies a server volume to a workstation user, so it must be unique among all 
volumes managed by the server. AilS-bit ASCII characters, except null ($00) and colon ($3A), are 
permitted in a volume name. This name is not used directly to specify ftles and directories on the 
volume. Instead, the workstation makes an AFP call to obtain a particular volume identifier, which 
it then uses in all subsequent AFP calls. (See "Designating a Path to a CNode" later in this chapter.) 

The volume signature identifies the volume type. Permitted values are discussed in the next 
section. 

For each session between the server and a workstation, the server assigns a Volume ID to each 
of its volumes. This value is unique among the volumes of a given server for that session. 

A volume's creation date-time is set by the server when the volume is created. Similarly, the 
modification date-time is changed by the server each time anything on the volume is modified. 
These two date-time values are managed solely by the server and cannot be modified by the 
workstation client. However, the backup date-time can be set by a backup program each time the 
volume's contents are backed up. When a volume is created, its backup date-time is set to $80000000 
(the earliest representable date-time value). 

Volume types 

An AFP volume is structured in one of two ways: flat or hierarchical. The latter organizes 
information into containers (directories), which in tum contain files. Flat volumes contain only 
one directory. Directories and flies are described in more detail later. This section discusses only 
directories and their identifiers, Directory IDs, as they relate to the structure of volumes. 

13-10 CHAPTER 13 AppleTalk Filing Protocol 



Of the three types of AFP volumes, one is flat and two are hierarchical. A flat volume contains 
only one directory, called the root, which in tum contains ftles. If a user tries to create a directory 
on a flat volume, the server returns an error message. Hierarchical volumes contain directories 
arranged in a branching hierarchy, also known as a tree structure. AFP allows two types of 
hierarchical volumes: fiXed Directory ID and variable Directory ID. 

A fiXed Directory ID volume is hierarchical and contains multiple directories. Each directory has 
its own permanent Directory ID, which is determined when the directory is created. The Directory 
ID is not used for any other directory during the lifetime of the volume, even if the corresponding 
directory is deleted from the volume. 

A variable Directory ID volume also maintains the uniqueness of its Directory IDs. However, it 
differs from a fiXed Directory ID volume in that it does not associate a permanent Directory ID 
with each directory. For variable Directory ID volumes, the ftle server creates a unique Directory ID 
for a directory whenever the workstation client issues an FPOpenDir call (see the FPOpenDir call 
under "AFP Calls" later in this chapter). The file server then maintains this Directory ID until either 
the client issues a FPCloseDir call or the AFP session is terminated. A Directory ID obtained through 
an FPOpenDir call to a variable Directory ID volume must be used only for that session. If the 
Directory ID is stored and used to reference the directory in a later session, the call might either fail, 
reach the wrong directory, or coincidentally reach the correct directory; the results of such a call are 
unpredictable. 

The three AFP volume types are identified by a 2-byte integer field called the volume signature. 
This field contains one of the following values: 

Value Volume type 

1 flat 

2 fJXed Directory ID 

3 variable Directory ID 

The volume types have the following support capabilities and constraints. Apple II computers and 
personal computers using MS-DOS can gain access to any of the three types of server volumes 
because the concept of Directory IDs is foreign to their flle systems. However, Macintosh 
computers using either the early (flat) flle system or the hierarchical file system (HFS) cannot 
directly use variable Directory ID volumes. Macintosh HFS volumes are fJXed Directory ID volumes, 
and hierarchical volumes on the ftle server can be handled by HFS only if they are fiXed Directory ID 
volumes. Macintosh applications, such as the FinderTM, save Directory IDs and do not expect them 
to vary. 

File system structure 13·11 



An application can be written that allows a workstation with a flat local file system to use 
parts of a variable Directory ID volume. Such an application would mount selected directories of a 
variable Directory ID volume as flat volumes. (To mount a volume is to make it available to a 
workstation. The volume is not physically mounted on a local disk drive; it only appears that way.) 
Each corresponding "virtual" volume would appear flat, because only one directory and its offspring 
files would be visible through the AFI. However, writing such applications is not recommended. 
This view of the volume is very limited; if the directory contained other directories, they would not 
be available to the workstation. 

Variable Directory ID volumes are included in this definition of AFP to accommodate non
Macintosh machines with ftle systems that are unable to implement the fixed Directory ID feature. 
Variable Directory ID volumes allow such machines to function as ftle servers and to make their 
ftles and directories accessible through AFP. 

Volume catalog 

The volume catalog is the structure that describes the branching tree arrangement of ftles and 
directories on a hierarchical volume (fiXed and variable Directory ID volumes). The catalog does not 
span multiple volumes; the workstation client sees a separate volume catalog for each server 
volume that is visible through the AFI. Figure 13-3 shows an example of a volume catalog and 
illustrates its elements. 

The volume catalog contains directories and files branching from a base directory known as the 
root. These directories and ftles are referred to as catalog nodes or CNodes (not to be confused 
with devices on a network, which are also called nodes). Within the tree structure, CNodes can be 
positioned in two ways; either at the end of a limb, in which case it is called a leaf, or connected 
from above and below to other CNodes, in which case it is called internal. Internal CNodes are 
always directories; leaf CNodes can be either files or empty directories. 

CNodes have a parent/offspring relationship: A given CNode is the offspring of the CNode 
above it in the catalog tree, and the higher CNode is considered its parent or parent directory. 
Offspring are contained within the parent directory. The only CNode without a true parent is the 
root directory. 

When an AFP call makes its way through the volume catalog, it can take only one shortest path 
from the root to a specific CNode. The CNodes along that path are said to be ancestors of the 
destination node, which in tum is called the descendent of each of its ancestors. 

13-12 CHAPTER 13 AppleTalk Filing Protocol 



• Figure 13·3 The volume catalog 

Roo 

a b c d e 

Leaf CNodes File Directory 
Internal CNode Ci':ode 
CNodes 

Ancestor of j. k, I, 
g and m; parent of 

j and k 

h Parent of m 

m Offspring of k 

Catalog node names 

CNode names identify every file and directory in a volume catalog, and each file or directory has 
both a long name and a short name. The root directory of a volume catalog represents the 
volume, and the root's long name is the same as the volume name. The volume essentially has a 
short name, which is the short name of the root directory, although AFP does not allow its use. 
Neither the root nor the volume can be deleted or renamed through AFP. 

File system structure 13·13 



Long names and short names correspond to two of the native file systems that AFP supports: 
Macintosh workstations refer to files and directories by long names; MS-DOS workstations use the 
short-name format. To allow these dissimilar workstations to share resources, the file server 
provides CNode names in both formats. When creating or renaming files and directories, the 
workstation user provides a name consistent with the native file system. The server then uses an 
algorithm to generate the other name (long or short). This section describes the rules for forming 
CNode names and the algorithm used for creating and maintaining dual names. 

The syntax for forming AFP long names is the same as the naming syntax used by the 
Macintosh HFS, with one exception: Null ($00) is not a permissible character in AFP long names. 
Otherwise, the mapping of character code to character is the same for AFP as it is for the Macintosh 
(see Appendix D). AFP long names are made up of at most 31 characters; valid characters are any 
printable ASCII code except colon ($3A) and null ($00). The volume name, and by inference the root's 
long name, cannot be longer than 27 bytes. 

The syntax for forming AFP short names is the same as the naming syntax used by MS-DOS, 
which is more restrictive than the naming syntax used in the Macintosh: Names may be up to eight 
alphanumeric characters, optionally followed by a period ($2E) and a one-to-three alphanumeric 
character extension. 

To ensure that a CNode can be uniquely specified by either name, AFP defmes the following rules: 

11 No two offspring of a given directory can have the same short name or the same long name. 

m A short name can match a long name if they both belong to the same file or directory. 

Therefore, either name, long or short, uniquely identifies CNodes within a parent directory. 
AFP naming rules are such that any MS-DOS name can be used directly as a CNode short name, 

and any Macintosh name can be used directly as a long name. The file server generates the other 
name for each CNode, deriving it from the first name specified and matching the second name as 
closely as possible. The long-name format is a superset of the short-name format. The name 
management algorithm mandates that whenever a CNode is created or renamed with a short name, 
the long name will always match. Deriving a short name from a long name is not so simple, and AFP 
does not stipulate an exact algorithm for this derivation. Therefore, different servers may perform 
this short-name creation differently. 

When a CNode is created, the caller supplies the node's name and a name type that indicates 
whether the name is in short or long format. The server then checks the name to verify that it 
conforms to the accepted format. The algorithm that follows describes how servers assign short 
and long names to a CNode (referred to as an object in this algorithm). 

13-14 CHAPTER 13 AppleTalk Filing Protocol 



IF name type is short OR name is in short format 

THEN check for new name in list of short names 

IF name already exists 
THEN return ObjectExists result 

ELSE set object's short and long names to new name 

ELSE { name type is long OR name is in long format 

check for new name in list of long names 

IF name already exists 

THEN return ObjectExists result 

ELSE set object's long name to new name 

derive short name from long name 

This algorithm is used for renaming as well as for creating new names. When a user renames an 
object, its other name is changed using the above algorithm. 

One limitation of this algorithm is that it does not prevent a user from specifying a long name 
that matches a short name generated by the file server for another file. A server-generated short 
name is normally not visible to a workstation that sees only long names. If a user inadvertently 
specifies a long name that matches a preexisting short name, the call fails and the server returns an 
ObjectExists result code. 

For example, for a Macintosh file created with the long name MacFileLongName, a file 
server can generate a short name of Ma cF i 1 e. When the user tries to create a new file with the 
long name MacFile in the same directory, the call fails, since the above algorithm stipulates 
that the long name and short name would both have to be set to MacFile. 

Directories and rdes 

Directories and files are stored in volumes and constitute the next level of the file system structure 
visible through the AFI. As was shown in Figure 13-3, directories branch to files and other 
directories. Each directory has an identifier through which it and its offspring can be addressed. 
Therefore, directories can be thought of as logically containing their offspring directories and ftles 
with the parameters described below. 

Directory IDs 

Each directory in the volume catalog is identified by a 4-byte long integer known as its Directory 
ID. Because two directories on the same volume cannot have the same Directory ID, the Directory 
ID uniquely identifies a directory within a volume. 

File system structure 13-15 



Within the volume catalog, as mentioned earlier, directories have ancestor, parent, and offspring 
relationships with each other. The Directory ID of a CNode's parent is called the CNode's Parent ID. 

A CNode can have only one parent, so a given CNode has a unique Parent ID. However, a CNode 
can have several ancestor directory identifiers, one for each ancestor. The parent directory is 
considered an ancestor. 

The Directory ID of the root is always 2. The root's Parent ID is always 1. (The root does not 
really have a parent; this value is returned only if a call asks for the root's Parent ID.) Zero (0) is not a 
valid Directory ID. 

Directory parameters 

In AFP Versions 1.1 and 2.0, a server must maintain the following parameters for each directory: 

Directory parameter (1.1 and 2.0) 

long name 

short name 

Directory ID 

Parent ID 

attributes 

Finder information 

offspring count (number of files and 
directories contained in the directory) 

creation date-time 

modification date-time 

backup date-time 

owner ID 

group ID 

owner access rights 

group access rights 

world access rights 

Description 

string of up to 31 characters 

string of up to 12 characters 

4 bytes 

4 bytes 

2 bytes 

32 bytes 

2 bytes 

4 bytes 

4 bytes 

4 bytes 

4 bytes 

4 bytes 

1 byte 

1 byte 

1 byte 

The Finder information parameter accompanies directories that are used by workstations with HFS. 
This parameter is maintained by the workstation client and is not examined by AFP. The last five 
directory parameters listed above relate to directory access controls, discussed later in this chapter. 

13-16 C H A P T E R 13 AppleTalk Filing Protocol 



In AFP Version 2.0, the server must maintain one more parameter in addition to those just 
listed; the ProDOS information parameter is discussed later in this section. 

Directory parameter (2.0) 

ProDOS information 

Description 

6 bytes 

The attributes parameter is a bitmap indicating various attributes of the directory. One directory 
attribute is defined in AFP Version 1.1. (The other attribute bits must be set to 0.) 

Directory attribute (1.1) 

Invisible 

Description 

directory should not be made visible to the 
workstation user 

The following directory attributes are defined in AFP Version 2.0: 

Directory attribute (2.0) 

Invisible 

System 

Backup Needed 

Renameinhibit 

Deletelnhibit 

Description 

directory should not be made visible to the 
workstation user 

directory is a system directory 

directory needs to be backed up 

directory cannot be renamed 

directory cannot be deleted 

The definition of system directory is left up to the workstation. 
The BackupNeeded bit is set whenever the directory's modification date-time changes. 
No specific bit exists to inhibit moving a directory, but directory movement is constrained by 

the Renamelnhibit bit when a directory is moved or moved and renamed. This is true whether the 
workstation is using AFP Version 1.1 or 2.0. 

Flle parameters 

In Versions 1.1 and 2.0, a server must maintain the following parameters for each file: 

Flle parameter (1.1 and 2.0) 

long name 

short name 

Parent ID 

flle number 

Description 

string of up to 31 characters 

string of up to 12 characters 

4 bytes 

4 bytes 

(continued) • 

File system structure 13-17 



Flle parameter (1.1 and 2.0) 

attributes 

Finder information 

data fork length 

resource fork length 

creation date-time 

modification date-time 

backup date-time 

Description (continued) 

2 bytes 

32 bytes 

4-byte unsigned integer 

4-byte unsigned integer 

4-bytes 

4-bytes 

4-bytes 

In AFP Version 2.0, the server must maintain one more parameter: 

Flle parameter (2.0) 

ProDOS information 

Description 

6 bytes 

The ProDOS information parameter contains a 2-byte File Type and a 4-byte Aux Type intended for 
use by ProDOS workstations. Note that ProDOS-8 defines the File Type field to be 1 byte and the 
Aux Type field to be 2 bytes. The extra bytes are reserved for future expansion. The type fields are 
arranged in the ProDOS information parameter as shown in Figure 13-4. 

For directories, the ProDOS File Type is always set to $OF. The server will return an 
afpAccessDenied error if the user attempts to set the ProDOS File Type of a directory to anything 
other than $OF. No restriction is made on the value of the directory's Aux Type, although it is 
initially set to $0200 when the directory is created. 

• Figure 13-4 ProDOS information format 

~1 byte (8 bits) -j 

ProDOS File Type 

0 

1- ProDOS Aux Type I 
Low byte 

High byte 

1- 0 -

13-18 CHAPTER 13 AppleTalk Filing Protocol 



For files, the ProDOS File Type is analogous to the Macintosh Finder Info fdType field. In 
an FPSetFileDirParms or FPSetFileParms call, if either field is set without setting the other, the 
server will derive an appropriate value for the other field. For example, if a ProDOS workstation sets 
a file's Pro DOS File Type to $ 0 4 and the Aux Type to $ o o o o without setting the Finder Info, 
the server will set the Finder Info fdCreator to 'pdos' and the fdType to 'TEXT'. 
The following ProDOS-to-Finder Info mappings are defined in AFP Version 2.0: 

ProDOS Info Finder Info 
Description Flle Type Aux Type fdCreator fdType 

ProDOS text 

ProDOS-8 application 

ProDOS-16 application 

Unknown 

All others 

$04 

$FF 

$B3 

$00 

any 

$0000 'pdos' 'TEXT' 

any 'pdos' 'PSYS' 

any 'pdos' 'PS16' 

any 'pdos' 'BINA' 

any 'pdos' 'p'XYY 

If ProDOS Info does not fall into any of the above special categories, the server sets the 
fdCreator field to 'pdos' and the fdType field to 'p' XYY, where X is equal to the 
ProDOS File Type and YY is equal to the ProDOS Aux Type. For example, a ProDOS File Type of $32 
and Aux Type of $5775 will map to an fdType field of 'p2Wu'. Some values of File Type and 
Aux Type will map to unprintable characters. 

The above mapping is perfonned only if the Finder Info (fdCreator or fdType) is 
actually changed. In other words, if a workstation sets the Finder Info to its current value, the 
ProDOS Info field will be left untouched. 

The ProDOS Info field is derived from Finder Info when a workstation client makes a call 
specifying new Finder Info without specifying new ProDOS Info. The following Finder-to-ProDOS 
Info mappings are defined in AFP Version 2.0: 

Finder Info ProDOS Info 
Description fdCreator fdType Flle Type Aux Type 

ProDOS text any 'TEXT' $04 $0000 

ProDOS-8 application 'pdos' 'PSYS' $FF unchanged 

ProDOS-16 application 'pdos' 'PS16' $B3 unchanged 

Unknown 'pdos' 'BINA' $00 unchanged 

Special fonnat #l 'pdos' 'p'XYY $X $YY 

Special format #2 'pdos' 'XX $XX unchanged 

All others any any $00 $0000 

File system structure 13-19 



Two special formats are designed to encode Pro DOS Info. The first is denoted by an f dType 

made up of the letter 'p ' followed by a 1-byte ProDOS File Type and a 2-byte ProDOS Aux Type 
(high order byte first). The ProDOS File Type and Aux Type are simply unpacked from the 
fdType field. The second special format is denoted by an fdType field consisting of a two
character hexadecimal number followed by two spaces (for example, 'B3 '). In this format, the 
2-character string is converted to its numerical value and stored as the ProDOS File Type field. The 
Aux Type field is left unchanged. 

If the Finder Info does not fall into any of the above specific mappings, the server sets the 
ProDOS File Type to $00 and the Aux Type to $0000. 

The fde number is a unique number associated with each file on the volume. This number is 
purely informative; AFP does not allow the specification of a file by its file number. 

The attributes parameter is a bitmap indicating various attributes of the file. Five ftle attributes 
are defined in AFP Version 1.1, and the rest of the 11 bits must be equal to 0. The 5 attributes are: 

Flle attribute (1.1) 

Invisible 

MultiUser 

RAlreadyOpen 

DAlreadyOpen 

Read Only 

Description 

ftle should not be made visible to the workstation 
user 

me is an application that has been written for 
simultaneous use by more than one user 

file's resource fork is currently open by a user 

file's data fork is currently open by a user 

user cannot write to the flle's forks 

In AFP Version 2.0, 10 file attributes are defined; the other bits must be equal to 0. The 10 attributes 
are: 

Flle attribute (2.0) 

Invisible 

MultiUser 

RAlreadyOpen 

DAireadyOpen 

Writelnhibit 

System 

Backup Needed 

Rename Inhibit 

Description 

flle should not be made visible to the workstation 
user 

file is an application that has been written for 
simultaneous use by more than one user 

file's resource fork is currently open by a user 

file's data fork is currently open by a user 

user cannot write to the file's forks 

file is a system file 

file needs to be backed up 

flle cannot be renamed 

13-20 CHAPTER 13 AppleTalk Filing Protocol 



Flle attribute (2.0) 

Delete Inhibit 

Copy Protect 

Description (continued) 

ftle cannot be deleted 

file should not be copied 

The ReadOnly bit is named Writeinhibit in AFP 2.0. 
For servers that support both AFP Version 1.1 and 2.0, the following rules will maintain 

consistency among the file attributes: If a workstation using Version 1.1 sets or clears the ReadOnly 
bit, the server sets or clears the Writeinhibit, Renamelnhibit, and Deletelnhibit bits. Likewise, when 
this workstation tries to read the state of the ReadOnly bit, the server logically-ORs the Write-, 
Rename-, and Deletelnhibit bits together and returns the result as the state of the ReadOnly bit. 

A workstation using Version 2.0 must be able to set and clear the Write-, Rename-, and 
Deleteinhibit bits individually, but the server enforces the actions specified by each bit, even for 1.1 
workstations. For example, if a 2.0 workstation set a file's Renamelnhibit bit, then a 1.1 
workstation would not be able to rename the file. It would appear as a ReadOnly file to the latter 
workstation, and clearing the ReadOnly bit would clear the Renamelnhibit bit and therefore allow 
the ftle to be renamed. 

No specific bit exists to inhibit moving a ftle, but file movement is constrained by the 
Renameinhibit bit only when a file is moved and renamed, not when it is simply moved. This 
constraint occurs whether the workstation is using AFP Version 1.1 or 2.0. 

The Macintosh Finder will not copy a file whose CopyProtect bit is set. An attempt to copy the 
file using the FPCopyFile command will result in an error. This bit may be read, but not set, using 
AFP. It is to be set by some administrative program, whose specification is beyond the scope of 
this chapter. 

The BackupNeeded bit is set whenever the file's modification date-time changes. 
The data fork length and resource fork length are equal to the number of bytes in the 

corresponding fork. 
The creation, backup, and modification date-time parameters are described next. 

Date-time values 

All date-time quantities used by AFP specify values of the server's clock. These values correspond 
to the number of seconds measured from 12:00 A.M. on January 1, 2000. In other words, the start of 
the next century corresponds to a date-time of 0. AFP represents date-time values with 4-byte 
signed integers. 

File system structure 13-21 



One of the AFP calls allows the workstation to obtain the current value of the server's clock. At 
login time, the workstation should read this value (s) and the value of the workstation's clock (w) 

and compute the offset between these values: s- w. All subsequent date-ti~e values read from the 
server should be adjusted by subtracting this offset from the date-time. All subsequent date-time 
values sent to the server should be adjusted by adding this offset to the date-time. This 
adjustment will correct for differences between the two clocks and will ensure that all 
workstations see a consistent time base. 

The creation date-time of a directory or a file is set to the server's system clock when the file or 
directory is created. The backup date-time is set by backup programs. When a ftle or directory is 
created, the server sets the backup date-time to $80000000, which is the earliest representable time. 

The server changes the modification date-time of a file that has been written to in a particular 
session when either of the file's forks is closed or flushed for that session (see the FPCloseFork call 
under "AFP Calls" later in this chapter). 

The server changes the modification date-time of a directory each time the directory's contents 
are modified. Therefore, any of the following actions will cause the server to assign a new 
modification date-time to the directory: renaming the directory; creating or deleting a CNode in the 
directory; moving the directory; changing its access privileges, Finder Info, or ProDOS Info; or 
changing the Invisible attributes of one of its offspring. 

An AFP client with the appropriate access rights can set the creation and modification date
time parameters to any value. 

Flleforks 

As in the Macintosh file system, a flle consists of two forks: a data fork and a resource fork. The 
bytes in a flle fork are sequentially numbered starting with 0. The data fork is an unstructured finite 
sequence of bytes. The resource fork is used to hold Macintosh operating system resources, such as 
icons and drivers, and a data structure for mapping them within the fork. AFP is designed to 
consider both forks as finite-length byte sequences; however, AFP contains no rules relating to the 
structure of the resource fork. For more information about resource forks, refer to Inside 
Macintosh. 

Either or both forks of a given file can be empty. Non-Macintosh AFP clients that need only 
one flle fork must use the data fork. Files created by a workstation with an MS-DOS operating 
system will have an empty resource fork, because a resource fork is unintelligible to that operating 
system. Consequently, an MS-DOS workstation that has gained access to a server ftle created by a 
Macintosh may not be aware of the existence of the file's resource fork. 

13-22 C H A PTE R 13 AppleTalk Filing Protocol 



Although AFP allows the creation of MS-DOS applications that can understand and manipulate 
resource forks, such applications would have to preserve the internal structure of the forks. Users 
of workstations that cannot manage the internal structure of the resource fork should never alter 
its contents because Macintosh workstations expect a specific format in the resource fork of any 
file. 

To read from or write to the contents of a file 's data or resource fork, the workstation client 
first issues a call to open the particular fork of the file, creating an access path to that file fork. The 
access path is not to be confused with the paths and pathnames described in the next section. 

Once the workstation client creates this access path, all subsequent read and write calls refer to 
it for the duration of the session. 

For each access path, the server maintains the following parameters: 

Parameter Description 

OForkRefNum 2 bytes (0 is invalid) 

AccessMode 2-byte bitmap 

Rsrc/DataFlag 1 bit 

The OForkRefNum uniquely identifies the access path among all access paths within a given 
session. The AccessMode indicates to the server whether this access path allows reading or writing. 
It is maintained by the server and is inaccessible to workstation clients of AFP. Rsrc/DataFlag 
indicates to d1e server that d1e access path belongs to the data or resource fork. 

In addition to the above parameters, the server must provide a way to gain access to the 
parameters of the file to which this open fork belongs (see the FPGetForkParms call under "AFP 
Calls" later in this chapter). 

Designating a path to a CNode 

In order to perform any action on a CNode, the workstation must designate a path to the CNode. 
AFP provides rules for specifying a path to any CNode in the volume catalog. A CNode (file or 
directory) can be unambiguously specified to the server by the identifiers shown in Figure 13-5. 

• Figure 13-5 CNode specification 

[ 
• • • P~thname 
··· ------------~ 

Designating a path to a CNode 13-23 



The Volume ID specifies the volume on which the destination CNode resides. The Directory ID 
can belong to the destination CNode (if the CNode is a directory) or to any one of its ancestor 
directories, up to and including the root directory and the root's parent directory. 

An AFP pathname is formatted as a Pascal string Oength byte followed by that number of 
characters). It is made up of CNode names, concatenated with intervening null-byte separators. 
Each element of a pathname must be the name of a directory, except for the last one, which can be 
the name of a directory or a me. 

The elements of a pathname can be long or short names. However, a given pathname cannot 
contain a mixture of long and short names. A path type byte, which indicates whether the 
elements of the pathname are all short or all long names, is associated with each pathname. A 
pathname consisting of short names has a path type of 1. A pathname consisting of long names 
has a path type of 2. 

A pathname can be up to 255 characters long. A single null byte as the length byte indicates that 
no pathname is supplied. Because the length byte is included at the beginning of the string, each 
pathname element (CNode name) does not include a length indicator. 

The syntax of an AFP pathname follows this paragraph. The asterisk ( *) represents a sequence 
of 0 or more of the preceding elements of the pathname; the plus ( +) represents a sequence of 1 or 
more of the preceding elements; <Sep> represents the separators in the pathname; the vertical bar 
( I ) is an OR operator; and the term on the left side of the : : = symbol is defined as the tenn(s) on 
the right side. 

<Sep> : := <null-byte>+ 

<Pathname> :: = empty-string 
<Sep>*<CNode narne>(<Sep><Pathnarne>)* 

This syntax represents a concatenation of CNode names separated by one or more null bytes. 
Pathnames can also start or end with a string of null bytes. 

A pathname can be used to traverse the volume catalog in any direction. The pathname syntax 
allows paths either to descend from a particular CNode through its offspring or to ascend from a 
CNode to its ancestors. In either case, the directory that is the starting point of this path is deftned 
separately from the pathname by its Directory ID. The first element of the pathname is an 
offspring of the starting point directory. The pathname must be parsed from left to right to 
obtain each element that is used as the next node on the path. 

To descend through a volume, a valid pathname must proceed in order from parent to 
offspring. A single null-byte separator preceding this first element is ignored. 

To ascend through a volume, a valid pathname must proceed from a particular CNode to its 
ancestor. To ascend one level in the catalog tree, two consecutive null bytes should follow the 
offspring CNode name. To ascend two levels in the catalog tree, three consecutive null bytes are 
used as the separator, and so on. 

13-24 CHAPTER 13 AppleTalk Filing Protocol 



A particular pathname may descend and ascend through the volume catalog. Because of this, 
many valid pathnames may refer to the same CNode. 

A complete path specification can take a number of forms. The table that follows summarizes 
the different kinds of path specifications that can be used to traverse the volume catalog 
illustrated in Figure 13-6. A zero in square brackets [0] represents a null-byte separator. 

The descriptions and examples that follow refer to this table and the corresponding volume 
catalog illustrated in Figure 13-6. To simplify these examples, the CNodes in this catalog are named 
a through j , except the root, which is named x. The path type will be ignored in this example. The 
letter v represents the volume's 2-byte Volume !D. Lines connect the CNodes; the unconnected lines 
indicate that other CNodes in this volume are not shown here. 

• Figure 13-6 Example 1 of a volume catalog 

(Volume ID • v) x 

a b 
'------,~--1 20 

c d 

e g h 
.___ __ ___, 7 .__ __ __J s 

'-----19 

Designating a path to a CNode 13-25 



Examples Volume ID Directory ID Pathname 

First v 2 a [0] c [0) e [0] j [0) 

Second v 4 e[O]j 

Third v 6 [0) j 

Fourth v 6 j 

Fifth v 6 [0] 

Sixth v 4 e [0][0) g [0][0] h 

Seventh v 4 e [0](0][0] 

Eighth v 1 x [0] a [0] c [0] h 

The first example path specification in the table above contains the Volume ID, the root directory's 
Directory ID, which is always a value of 2, and a pathname. In this case, the pathname must 
contain the names of all the destination file's ancestors, except the root, and it must end with the 
name of the file itself. The single trailing null-byte is ignored. 

The second path specification contains the Volume ID, the Directory ID of an ancestor, and a 
pathname. 

The third path is essentially the same as the second. The single leading null-byte is ignored. 
In the fourth path specification, the Directory ID is the Parent ID of the destination flle. In 

this case, the pathname need contain only the name of the destination file itself. 
The fifth path specification illustrates another way to uniquely specify a descending path to a 

directory. It includes the CNode's Volume ID, its Directory ID, and a null pathname. This path 
specification is used to specify the directory e. 

The sixth path specification is an example of an ascending path. The first CNode in the 
pathname is the offspring of the starting-point Directory ID. Then the pathname ascends through 
es parent (c) down to directory g, back up togs parent (c), and down again to h. 

The seventh example shows an ascending pathname that starts at directory c (whose Directory 
ID is 4), moves down toe, and then ascends two levels toes parent's parent (a). 

The eighth example is a special case in which the starting point of the path is Directory ID 1, the 
parent of the root. The first name of the pathname must be the volume name or root directory 
name corresponding to Volume ID v; beyond that, pathname traversal is performed as in the other 
examples. 

13-26 CHAP T E R 13 Apple Talk Filing Protocol 



AFP login 

In order to make use of any resource managed by a file server, the workstation must first log in to 
the server. This section provides an overview of the AFP login process. (AFP login is described in 
relation to specific calls in "An Overview of AFP Calls" later in this chapter.) 

During the AFP login process, the workstation performs the following steps: 

1. It finds the server. 

2 It determines which AFP versions the server understands. 

3. It determines which UAMs the server recognizes. 

4. It indicates the AFP version it will use for the session. 

5. It tells the server which UAM to use. 

6. It prompts the user to provide authentication information. (This step is optional.) 

Before a session can be established, the file server must have a session listening socket (SI.5). When a 
server first becomes active on the network, it calls the AppleTalk Session Protocol (ASP) to open an 
SLS. AFP uses the Name Binding Protocol (NBP) to register the file server's name and type on the 
socket. For the file server, the NBP type is 'AFP Server ' . When the SI.5 has been opened and the 
ftle server's name has been registered, the file server is available to workstations. 

To find the file server, the workstation submits a lookup call to NBP. NBP returns the 
addresses of all network-visible entities that match the lookup request within the zone specified by 
the workstation. 

The string used to find the names of all file servers is case-insensitive and diacritical-sensitive, 
and has the following form: 

=:AFPServer@<zone name> 

NBP responds to this lookup string with a list of all active file servers in the zone, including the 
internet addresses of their SI.5s. The workstation must then choose a server from among those 
listed. The way it does this is implementation-dependent. 

Another way a workstation can find a file server is to request it by name using the following 
form: 

<server ' s name>: AFPServer@<zone name> 

If the server is running, NBP will return the internet address of its SI.5. 

AFP login 13-27 



After the workstation picks a server, it uses the FPGetSrvrinfo call to request information 
about that server. The server returns information that includes which AFP versions and UAMs the 
server recognizes. Each AFP version is uniquely described by a string of up to 16 characters called the 
AFPVersion string. The AFPVersion strings for the two protocol versions described in this chapter 
are 1 AFPVersion 1 . 1' and ' AFPVersion 2 . 0 1

• Each UAM is described by a UAM string. 
(See "User Authentication Methods" later in this chapter for information about this string.) 

From the list returned by the server, the workstation chooses which AFP versions and UAM 
strings the workstation and the server will use for the session that is about to begin. 

The workstation initiates the login process by submitting an FPLogin call to the server. This call 
includes the AFPVersion string, the UAM string, and the internet address of the SLS. The UAM 
string describes only the UAM; it does not include user login information. Depending on the UAM 
method used, the FPLogin call can include user login information (such as a user name or password), 
or subsequent FPLoginCont calls may be required to complete authentication of the user, as 
described in the next section. 

If the user authentication method succeeds, an AFP session between the workstation and the 
server will begin. 

File server security 

Information stored in a shared resource sometimes needs protection from unauthorized users. The 
role of file server security is to provide varying amounts and kinds of protection, depending on 
what users feel is necessary. 

AFP provides security in three ways: 

• user authentication when the user logs in to the server 

• an optional volume-level password when the user first attempts to gain access to a volume 

• directory access control 

User authentication methods 

AFP provides the capability for servers and workstations to use a variety of methods to 
authenticate users. Three user authentication methods are already defined: no user authentication, 
cleartext password, and random number exchange. (Others can be easily added later.) 

13-28 CHAP T E R 13 Apple Talk Filing Protocol 



The workstation indicates its choice of UAM by giving the server a UAM string. These strings 
are intended to be case-Insensitive and diacritical-sensitive. 

Some of these methods require additional user authentication information to be passed to the 
server in the FPLogin call. The following paragraphs describe the three user authentication methods 
and the kinds of information they require as User Auth Info (user authentication information). 

No user authentication 

The first of these methods, no user authentication, needs no specification. No user name or password 
information is required in the FPLogin call. The call, therefore, has no User Auth Info field. The corresponding 
UAM string is r No User Authent r. 

In order to implement the directory access control described later in this section, the server 
must assign a user ID and group ID to the user for that session. In this UAM, the server assigns to 
the user world access rights for every directory in every server volume. World access rights are 
described in "Directory Access Control" later in this chapter. 

Cleartext password 

The second method, cleartext password, uses the corresponding UAM string of 
r Cleartxt Passwrd r. This method transmits the password as clear, rather than encoded, 
text along with the user name. The User Auth Info part of the FPLogin call consists of the user 
name (a string of up to 31 characters) followed by the user's password. In order to ensure that the 
user's password is aligned on an even byte boundary in the packet, the workstation may have to 
insert a null byte ($00) between the user name and the password. The user's password is an 8-byte 
quantity. If the user provides a shorter password, it must be padded on the end with null bytes to 
make it 8 bytes long. The permissible set of characters in passwords consists of all 7 -bit ASCII 
characters. 

User name comparison must be case-insensitive, but password comparison is intended to be 
case-sensitive in this user authentication method. 

The cleartext password method should be used by workstations only if the intervening 
network is secure against eavesdropping. Otherwise, the password information can be read from 
FPLogin call packets by anyone listening to the network. 

Random number exchange 

In environments in which the network is not secure against eavesdropping, random number 
exchange is a more secure user authentication method. This method corresponds to the UAM string 
r Randnum Exchange r. With random number exchange, the user's password is never sent over 
the network and cannot be picked up by eavesdropping. Deriving the password from the 
information sent over the network is essentially impossible. 

File server security 13-29 



In this UAM method, the server provides a random number to the workstation. The user then 
enters a password that the workstation uses as an encryption key applied to the random number. 
The encrypted random number is sent to the server. The server takes the same random number and 
encrypts it with what the server believes is the user's password. If both encrypted numbers match, 
the user is authenticated. This method provides network security that is as secure as the basic 
encryption method. 

The random number exchange UAM consists of the following steps: 

1. The workstation client sends the FPLogin call with the UAM string and the User Auth Info 
field containing the user name string. 

2 Upon receiving this call, the server examines its user database to determine whether the user 
name is valid. 

3. If the server does not find the user name in the user database, it sends an error code to the 
workstation indicating that the user name is not valid and then denies the login request. If the 
server finds the name in the user database, it generates an 8-byte random number and sends it 
back to the workstation, along with an ID number and an AuthContinue result code. The 
AuthContinue indicates that all is well at this point, but the user is not yet authenticated. 

4. Both the workstation and the server use the National Bureau of Standards Data Encryption 
Standard (NBS DES) algorithm to encrypt the random number. The user's case-sensitive 
password is applied as the encryption key to generate an 8-byte value. The server applies the 
same algorithm to the password it finds associated with the user name in its database. 

5. The workstation sends the encrypted value back to the server in the User Auth Info field of 
the FPLoginCont call, along with the ID number it received from the server. The server uses this 
ID number to associate the two calls, FPLogin and FPLoginCont. 

6. The server compares the workstation's encrypted value with the encrypted value obtained 
using the password from its user database. If the two encrypted values match, the 
authentication process is complete and the login succeeds. The server returns a NoErr result 
code to the workstation. If the two encrypted values do not match, the server returns the 
UserNotAuth result code. 

Volume passwords 

AFP provides an optional second level of access control through volume passwords. A server can 
associate a fixed-length 8-character password with each volume it makes visible through the AFI. 

The workstation can issue an FPGetSrvrParms call to the server to discover the names of each 
volume and to get an indication of whether each of them is password-protected. 

13-30 C HAP T E R 13 AppleTalk Filing Protocol 



To make AFP calls that refer to a server volume, the workstation uses a volume identifier called 
the Volume ID. The workstation obtains this ID by sending an FPOpenVol call to the server. This 
call contains the name of the volume as one of its parameters. If a password is associated with the 
volume, the call must also include the password as another parameter. 

Volume passwords constitute a simple protection mechanism for servers that do not need to 
implement the directory access control described in the next section. However, volume passwords 
are not as secure as directory access control. 

Directory access control 

The directory access control method provides the greatest degree of network security in AFP. This 
method assigns access rights to users. Once the user has logged in to the file server, access rights 
allow users varying degrees of freedom for performing actions within the directory structure. 

AFP defines three directory access rights: search, read, and write: 

• A user with search access to a directory can list the parameters of directories contained within 
the directory. 

• A user with read access to a directory can list the parameters of files contained within the 
directory, in addition to being able to read the contents of a file. 

• A user with write access to a directory can modify the contents of a directory, including the 
parameters of files and directories contained within the directory. Write access allows the user 
to add and delete directories and files as well as modify the data contained within a file. 

Each directory on a server volume has an owner and a group affiliation. Initially, the owner is the 
user who created the directory, although ownership of a directory may be transferred to another 
user. Only the owner of a directory can change its access rights. The server uses a name of up to 31 
characters and a 4-byte ID number to represent owners of directories. Owner name and owner ID 
are synonymous with user name and user ID. 

The group affiliation is used to assign a different set of access rights for the directory to a 
group of users. For each group, the server maintains a name of up to 31 characters, a 4-byte ID 
number, and a list of users belonging to that group. Assigning group access rights to a directory 
gives those rights to that set of users. 

Each user may belong to any number of groups or to no group. One of the user's group 
affiliations may be designated as the user's primary group. This group will be assigned initially to 
each new directory created by the user. The directory's group affiliation may be removed or 
changed later by the owner of the directory. 

File server security 13-31 



The tenn world is used to indicate every user that is able to log on to the server. A directory 
may be assigned certain world access rights that would be granted to a user who is neither the 
directory's owner nor a member of the group with which the directory is afflliated. 

With each directory, the file server stores three access rights bytes, which correspond to the 
owner of the directory, its group affiliation, and the world. Each of these bytes is a bitmap that 
encodes the access rights (search, read, or write) that correspond to each category. The most 
significant 5 bits of each access rights byte must be 0. 

To perfonn directory access control, AFP associates the following five parameters with each 
directory: 

Parameter Description 

owner ID 4 bytes 

group ID 4 bytes 

owner access rights 1 byte 

group access rights 1 byte 

world access rights 1 byte 

The owner ID is the same as the owner's user ID. The group ID is the ID number of the group 
with which the directory is affiliated, or 0. The file server maintains a one-to-one mapping between 
the owner ID and the user name and between the group ID and the group name. As a result, each 
name is associated with a unique ID. AFP includes calls that allow users to map IDs to names and 
vice versa. Assignment of user IDs, group IDs, and primary groups is an administrative function 
and is outside the scope of this protocol. 

A group ID of 0 means that the directory has no group affiliation; the group's access rights 
(search, read, and write) are ignored. 

When a user logs on to a server, identifiers are retrieved from a user database maintained on the 
server. These identifiers include the user ID (a 4-byte number unique among all server users) and one 
or more 4-byte group IDs, which indicate the user's group affiliations. The exact number of group 
affiliations is implementation-dependent. One of these group IDs may represent the user's primary 
group. 

The server must be able to derive what access rights a particular user has to a certain directory. 
The user access rights (UARights) contain a summary of what the rights are, regardless of the 
category (owner, group, world) from which they were obtained. In addition, the user access rights 
contain a flag indicating whether the user owns the directory. 

The following algorithm is used by the server to extract the user access rights. The OR in this 
algorithm indicates inclusive OR operations. 

13-32 CHAPTER 13 AppleTalk Filing Protocol 



UARights := world's access rights; 

clear OARights owner flag 
If (owner ID g 0) then 

set OARights owner flag 
If (user ID = owner ID) then 

OARights := OARights OR owner's access rights; 

set OARights owner flag 

If (any of user's group IDs = directory's group ID) then 

OARights : = OARights OR directory's group's access rights 

An owner ID of 0 means that the directory is unowned or is owned by any user. The owner bit 
of the access rights byte is always set for such a directory. 

The access rights required by the user to perform most file management functions are 
explained in the following paragraphs according to the following notation: 

Symbol Meaning 

SA search access to all ancestors down to, but not including, the parent directory 

WA search or write access to all ancestors down to, but not including, the parent directory 

SP search access to the parent directory 

RP read access to the parent directory 

WP write access to the parent directory 

Almost all operations require SA. To perform any action within a given directory, the user must 
have permission to search every directory in the path from the root to the parent's parent directory. 
Access to flles and directories within the parent directory is then determined by SP, RP, and WP. 

Specific file management functions and the access rights needed to perform them are: 

Function 

Create a fde or a 
directory 

Enumerate a 
directory 

Required access rights 

The user must have WA plus WP. A hard create (delete first if file exists) 
requires the same rights as deleting a flle. 

To enumerate a directory is to list in numerical order the offspring of the 
directory and selected parameters of those offspring. The user must have 
search access to all directories down to but not necessarily including the 
directory being enumerated (SA). In addition, to view its directory 
offspring, the user must have search access to the directory being 
enumerated (SP). To view its file offspring, search access to the directory is 
not required, but the user must have read access to the directory (RP). 

(continued) • 

File server security 13-33 



Function 

Delete a me 

Delete a directory 

Rename a ftle 

Rename a directory 

Read directory 
parameters 

Required access rights (continued) 

The user must have SA, RP, and WP. A file can be deleted only if it is not 
open at that time. 

The user must have SA, SP, and lVP. A directory can be deleted only if it is 
empty. 

The user must have SA, RP, and WP. 

The user must have SA, SP, and WP. 

The user must have SA and SP. 

Read file parameters The user must have SA and RP. 

Open a me to read 
its contents 

Open a ftle to write 
to its contents 

Write file 
parameters 

Write directory 
parameters 

Move a directory or 
a ftle 

A file's fork must be opened in read mode before its contents can be read. 
To open a flle in read mode, the user must have SA and RP. Read mode and 
other access modes are described in the next section. 

A file's fork must be opened in write mode in order to write to it. To open 
an empty fork to write to it, the user must have WA and WP. (The empty 
fork must belong to a file that has both forks of 0 length.) To open an 
existing fork (when either fork is not empty) to write to it, SA, RP, and WP 
are required 

The user must have WA plus WP to set the parameters of an empty file 
(when both forks are 0 length). To set the file parameters of a file with an 
existing fork (when either fork is not empty), SA, RP, and WPare required. 

The user must have SA, SP, and WP to change a directory's parameters if the 
directory contains offspring. If the directory is empty, the user must have 
WA plus WPto change its parameters. 

Through AFP, a directory or a file can be moved from its parent directory to 
a destination parent directory on the same volume. To move a directory, the 
user must have SA and SPaccess to the source parent directory, WA to the 
destination parent directory, plus WP to both source and destination 
parents. To move a ftle, the user needs SA plus RPto the source parent 
directory, WA to the destination parent directory, plus WP to both source 
and destination parents. 

13-34 C H A PTE R 13 AppleTalk Filing Protocol 



Function 

Modify a 
directory's access 
righcs information 

Copy a file 
(FPCopyFile) 

Required access rights (continued) 

A directory's owner ID, group ID, and the chree access righcs byres can be 
modified only if the user is che direccory's owner and then only if the user 
has W'A plus \VP or SP access to the parent directory. 

To copy a file, on a single volume or across volumes managed by che server, 
the user must have SA plus RPaccess to the source parent directory and WA 
plus \VP to the destination parent directory. 

File sharing modes 
AFP controls user access to shared files in two ways. The first, described in the previous section, 
provides security by controlling user access to specific directories. The second preserves data 
integrity by controlling a user's access to a file while it is being used by another user. This section 
describes d1e second way, in which files are shared concurrently. 

To control simultaneous file access, the file server must enforce synchronization rules. 
These rules prevent applications from damaging each od1er's files by modifying the same version 
simultaneously. They also prevent users from obtaining access to information while it is being 
changed. 

Synchronization rules are built from the mode in which a first user and subsequent users open a 
file. AFP provides two classes of modes: access modes, also know as permissions, and deny modes. 

Access modes and deny modes 

Most file systems use a set of permissions to regulate the opening of files. This set includes 
permission to modify the contencs of a file (read-write) and permission co see the file's contencs 
(read only). In a stand-alone system, these two file-access modes are sufficient. 

In the shared environment of a file server, this set of pem1issions, or access modes, is 
expanded. In addition to chis set, a set of restrictions is provided by deny modes. 

A user application can specify an access mode and a deny mode upon opening a file on che file 
server. AFP supporcs me access modes: read, write, read-write, or none. None access allows no 
further access to che fork, except to close it, and may be useful in implementing synchronization. In 
addition to one of mese access modes, the user indicates a deny mode to che server to specify 
which righcs should be denied to others trying to open che fork while me first user has it open. 
Users that subsequently try to open that fork can be denied read, write, read-write, or none access. 

File sharing modes 13-35 



A user submitting an FPOpenFork call can be denied file access for the following reasons: 

• The user does not possess the rights (as owner, group, or world) to open the file with the 
requested access mode. An AccessDenied result code is returned. 

• The fork is already open with a deny mode that prohibits the second user's requested access. 
For example, the first user opened the fork with a deny mode of Deny Write, and the second 
user tries to open the fork in the write mode. A DenyConflict error is returned to the second 
user. 

• The fork is already open with an access mode that conflicts with the second user's requested 
deny mode. For example, the first user opened the fork for Write access and a deny mode of 
DenyNone. The second user tries to open the fork with a deny mode indicating DenyWrite. 
This request is not granted because the fork is already open for Write access. A DenyConflict 
error is returned to the second user. 

Deny modes are cumulative in that each successful opening of a fork combines its deny mode with 
previous deny modes. Therefore, if the first user opening a file specifies a deny mode of DenyRead, 
and the second user specifies DenyWrite, the fork's current deny mode (CDM) is Deny Read-Write. 
DenyNone and DenyRead combine to form a CDM of Deny Read. 

Similarly, access modes are cumulative; if the first user opening a file has Read access and the 
second has Write access, the current access mode (CAM) is Read-Write. 

Synchronization rules 

Synchronization rules, as previously discussed, allow or deny simultaneous access to a ftle fork. 
They are based on the CDM and the CAM of the fork and on the new deny and access modes being 
requested in a new FPOpenFork call. Synchronization rules are summarized in Table 13-1. A dot 
indicates that a new open call has succeeded; otherwise, it has failed. 

13-36 C H A PTE R 13 Apple Talk Filing Protocol 



• Table 13-1 Synchronization rules 

Current deny mode 
and current access mode 

~( 
New open attempt deny mode 

and new open auempt access mode 
I 

\ 
Deny R/W Deny\X'ritc Deny Read Deny None 

R RW W R RW W R RW W R RW \VI 

• • • • 
R • • 

Deny R/W RW • 
w • • 

• • • . • • • • 
R • • • . 

Deny Write RW • • 
w • • • • 

• • • • • • • • 
R • • • • 

Deny Read RW • • 
\V • • . • 

• • • • • • • • • • • • • • • • 
R . • . . • • • . 

Deny None RW • • • • 
w • • . • • • . • 

Desktop database 

For file seiVer volumes, AFP provides an interface that replaces the Macintosh Finder's direct use of 
the Desktop file. This interface is necessary because the Desktop file was designed for a stand
alone environment and could not be shared by multiple users. The AFP interface to the Desktop 
database replaces the Desktop file and can be used transparently for both local and remote 
volumes. 

The Desktop database is used by a file server to hold information needed specifically by the 
Finder to build its unique user interface, in which icons are used to represent objects on a disk 
volume. To create certain parts of this interface, the Finder uses the Desktop database to perform 
three functions: 

• to associate documents and applications with particular icons and store the icon bitmaps 

• to locate the corresponding application when a user opens a document 

• to hold text comments associated with ftles and directories 

Desktop database 13-37 



Macintosh applications usually contain an icon that is to be displayed for the application itself as 
well as other icons to be displayed for documents that the application creates. These icons are 
stored in the application's resource fork and in the Desktop database. The Desktop database 
associates these icons with each file 's creator (the fdCreator field of the FI nfo record) 
and type (the fdType field of the Finfo record), which are stored as part of the file's Finder 
information. 

The Finder allows a Macintosh user to open a document, that is, to select a file and implicitly 
start the application that created the file. To do this, the Desktop database maintains a mapping 
between the file creator and a list of the locations of each application that has that fi le creator 
associated with it. This mapping is referred to as an APPL mapping, since all Macintosh applications 
have a file creator of 1 APPL 1 • The Finder obtains the first item in the list and tries to start the 
application. If for some reason the application cannot be started (for example, if it is currently in 
use), the Finder will obtain the next application from the Desktop database's list and try that one. 
This list is dynamically filtered to present to the Finder only those applications for which the 
workstation user has the proper access rights. 

The Desktop database is also a repository for the text of comments associated with files and 
directories on the volume. The Finder will make calls to the Desktop database to read or write these 
comments, which can be viewed and modified by selecting the Get Info item in the Finder's File 
menu. Comments are completely uninterpreted by the Desktop database. 

For more information about the Macintosh Finder and the use of the Desktop file, refer to 
Inside Macintosh. 

AFP's use of ASP 

The AppleTalk Filing Protocol requires a basic level of transport services for conveying its request and 
reply blocks between workstation and server. This section describes how AFP can be built on the 
AppleTalk Session Protocol (ASP). However, it should not be inferred that AFP must be built on ASP. 
This section is meant to be a reference for those developers who are implementing AFP on ASP. 

• The AFP variable FPError is transmined in ASP's CmdResult field, and AFP's Request Blocks are 
transmitted in tl1e ASP Command Block field. 

• The FPGetSrvrlnfo request is transmitted to the server as an ASP SPGetStatus call. All other 
AFP requests, with the exception of FPWrite and FPAddlcon, are transmitted as ASP 
SPCommand calls. FPWrite and FPAddlcon are transmitted as ASP SPWrite calls. 

13-38 CHAP T E R 13 AppleTalk Filing Protocol 



• When a user wishes to log on to an AFP file server, the workstation must first issue an 
SPOpenSession call to create an ASP session between workstation and server. The first AFP 
request sent on that session should be FPLogin. When the log-on procedure has been 
successfully completed, an AFP session exists between workstation and server. If the Jog-on 
procedure fails, the workstation should issue an SPCloseSession call to tear down the ASP 
session. 

• When a user wishes to terminate the AFP session, the workstation must first issue an 
FPLogout request to the server. \Vhen the reply to that request has been received, the 
workstation should issue an SPCloseSession call to tear down the ASP session. 

• Note that FPRead, FPWrite, and FPEnumerate requests can succeed partially. That is to say, the 
request may return no error, but read, write, or enumerate less than was specified in the 
request. This can occur with FPRead and FPWrite if the request encounters a range of bytes 
that were locked by another user. 

These requests may, however, attempt to read, write, or enumerate more bytes than are 
allowed by ASP's QuantumSize. In such cases, the amount of data transferred may be truncated 
to QuantumSize or less. If no FPError was returned in the reply, the workstation can issue an 
additional FPRead, FPWrite, or FPEnumerate request to augment the original request. 

Although the workstation AFP client may have to issue several ASP calls to complete a single 
AFP request, the first ASP command should convey the actual size of the original AFP request, 
even if it is greater than QuantumSize. This allows a server to optimize its operation. 
Subsequent ASP commands should include sizes adjusted to reflect how much of the original 
request has been completed. 

An overview of AFP calls 

This section provides an overview of AFP calls and how they are used. Each call obtains access to an 
AFP-file-system-visible entity; this section groups the calls in relation to the entity they address. 
These groups include server, volume, directory, file, combined directory-file, fork, and Desktop 
database calls. 

Each AFP call is listed alphabetically and described in detail in "AFP Calls" later in this chapter. 

An overview of AFP calls 13·39 



Server calls 

A workstation client of AFP uses the following calls to get information about a file server and to 
open and close a session with it: 

• FPGetSrvrlnfo 

• FPGetSrvrParms 

• FPLogin 

• FPLoginCont 

• FPLogout 

• FPMapiD 

• FPMapName 

• 
• 

FPChangePassword (AFP Version 2.0 only-optional) 

FPGetUserlnfo (AFP Version 2.0 only) 

Before becoming a client of AFP, a workstation uses NBP to find the internet address of the file 
server's session listening socket. This address is called the SAddr. 

Next, the workstation uses the AFP call FPGetSmlnfo to obtain server information. At this 
point, a session is still not open between the workstation and the server. The FPGetSrvrlnfo call 
returns a block of server information containing the following server parameters: server name, 
machine type, AFP version strings, UAM strings, Macintosh volume icon and mask, and a bitmap of 
flags. These parameters are described in "AFP Calls" later in this chapter. 

The workstation client selects one AFP version string and one UAM string from the lists 
returned by this call. The workstation then includes these strings in an FPLogin call to establish a 
session with the file server. A session is needed before any other AFP calls can be made to the server. 

In response to the FPLogin call, the server performs user authentication and returns a session 
reference number (SRefNum), which is used in all calls made over this session. Depending on the 
chosen UAM, the entire user authentication process can involve FPLoginCont (login continue) calls 
to continue the authentication process with the server. 

After a session is established, the workstation must obtain a list of the server's volumes. To 
obtain the list, the workstation sends the FPGetSrvrParrns call, which returns information about 
the number of volumes on the server, the names of these volumes, and an indication of whether 
they are password-protected. 

13-40 CHAPTER 13 AppleTalk Filing Protocol 



When the workstation user no longer needs to communicate with the server, the workstation 
client of AFP issues an FPLogout call to terminate the session. 

The FPMapiD and FPMapName calls are used for directory access control. The FPMapiD call 
obtains the user or group name corresponding to a given user or group ID. The FPMapName call 
provides the opposite, converting a user or group name to the corresponding user or group ID. 

The FPChangePassword call is used to change a user's password. The FPGetUserlnfo call 
retrieves information about a user. 

Volume calls 

AFP provides five volume-level calls: 

• FPOpenVol 

• FPCloseVol 

• FPGetVolParms 

• FPSetVoiParms 

• FPFiush 

After obtaining the volume names through the FPGetSrvrParms call, the workstation client of AFP 
makes an FPOpen Vol call for each volume to which it wants to gain access. If the volume has a 
password, it must be supplied at this time. The call returns the volume parameters asked for in the 
call, including the Volume ID. 

The Volume ID is used in all subsequent calls to identify the volume to which the calls apply. 
The Volume ID remains a valid identifier either until the session is terminated with the FPLogout 
call or until an FPCioseVol call is made. 

After obtaining a volume's Volume ID, the workstation client can obtain the volume's 
parameters by making an FPGetVoiParms call. The workstation client can also change the volume's 
parameters by issuing an FPSetVolParms call. (Volume parameters are described in "File System 
Structure" earlier in this chapter.) 

The FPFiush call requests that the server flush (write to its disk) any data associated with a 
particular volume. 

An overview of AFP calls 13-41 



Directory calls 

AFP provides five directory-level calls: 

• FPSetDirParms 

• FPOpenDir 

• FPCloseDir 

• FPEnumerate 

• FPCreateDir 

The FPSetDirParms call allows the workstation client to modify a directory's parameters. To obtain 
a directory's parameters from the me server, the workstation client uses the FPGetFileDirParms call, 
which is described under "Combined Directory-File Calls" later in this chapter. (For a list and 
description of directory parameters, see "Directories and Files" earlier in this chapter.) 

The workstation client uses the FPOpenDir call to open a directory on a variable Directory ID 
volume and to retrieve its Directory ID. The Directory ID is used in subsequent calls to enumerate 
the directory or to obtain access to its offspring. For variable Directory ID volumes, the FPOpenDir 
call is the only way to retrieve the Directory ID. Using an FPGetFileDirParms or an FPEnumerate call 
to retrieve the Directory ID on such volumes returns an error. 

On a ftxed Directory ID volume, using the FPGetFileDirParms or an the FPEnumerate call is the 
preferred way to obtain a Directory ID, although using the FPOpenDir call also works. 

The workstation client can close directories on variable Directory ID volumes by making an 
FPCloseDir call, which invalidates the corresponding Directory ID. 

The workstation client uses the FPEnumerate call to list, or enumerate, the files and directories 
contained within a specified directory. In reply to this call, the server returns a list of directory or 
file parameters corresponding to these offspring. 

Directories are created with the FPCreateDir call. 

13-42 C H A PTE R 13 AppleTalk Filing Protocol 



File calls 

AFP provides three file-level calls: 

• FPSetFileParms 

• FPCreateFile 

• FPCopyFile (optional) 

The workstation client of AFP uses the FPSetFileParms call to modify a specified file's parameters, 
the FPCreateFile call to create a file, and the FPCopyFile call to copy a file that exists on a volume 
managed by a server to any other volume managed by that server. To obtain a specified file's 
parameters, the workstation client uses the FPGetFileDirParms call, discussed next. 

Combined directory-me calls 

AFP provides five calls that operate on both files and directories: 

• FPGetFileDirParms 

• FPSetFileDirParms 

• FPRename 

• FPDelete 

• FPMoveAndRename 

The workstation client of AFP uses the FPGetFileDirParms call to retrieve the parameters 
associated with a given file or directory. When it uses this call, the workstation does not need to 
specify whether the CNode is a file or a directory; the file server indicates the CNode's type in 
response to this call. 

The FPSetFileDirParrns call is used to set the parameters of a file or directory. When the 
workstation client uses this call, it need not specify whether the object is a file or directory. This call 
allows the workstation to set only those parameters that are common to both types of CNodes. 

The FPRename call is used to rename files and directories. 
The FPDelete call is used to delete a file or directory. A ftle can be deleted only if it is not open; a 

directory can be deleted only if it is empty. 
The FPMoveAndRename call is used to move a file or a directory from one parent directory to 

another on the same volume. The moved CNode can be renamed at the same time. 

An overview of AFP calls 13-43 



Fork calls 

AFP provides eight fork-level calls: 

• FPGetForkParms 

• FPSetForkParms 

• FPOpenFork 

• FPRead 

• FPWrite 

• FPFiushFork 

• FPByteRangeLock 

• FPCioseFork 

The workstation client of AFP uses the FPGetForkParms call to read a fork's parameters. 
The FPSetForkParms call is used to modify a fork's parameters. 
The FPOpenFork call is used to open either of an existing file's forks. This call returns an open 

fork reference number (OForkRefNum), which is used in subsequent calls to this open fork. 
The FPRead call is used to read the contents of the fork. 
The FPWrite call is used to write to a fork. 
TI1e FPFiushFork call is used to request that the server write to its disk any of the fork's data 

that is in the server's internal buffers. 
The FPByteRangeLock call is used to lock ranges of bytes in the fork. Locking a range of bytes 

prevents other workstation clients from reading or writing data in that part of the fork. Locks 
allow multiple users to share a file's open fork. If a workstation client locks a byte range, that range 
is reserved for exclusive manipulation by the client placing the lock. 

The FPCioseFork call is used to close an open fork. This call invalidates the OForkRefNum that 
was assigned when the fork was opened. 

13-44 CHAPTER 13 Apple Talk Filing Protocol 



Desktop database calls 

A workstation client of AFP uses the following calls to read and write information stored in the 
server's Desktop database. 

11 FPOpenDT 

m FPCloseDT 

m FPAddlcon 

11 FPGetlcon 

11 FPGetlconlnfo 

II FPAddAPPL 

11 FPRemoveAPPL 

11 FPGetAPPL 

Ell FPAddComment 

11 FPRemoveComment 

11 FPGetComment 

Before any other Desktop database calls can be made, the workstation client of AFP must make an 
FPOpenDT call. This call returns a reference number to be used in all subsequent calls. 

When access to the Desktop database is no longer needed, the workstation client makes an 
FPCloseDT call. 

FP Addlcon adds a new icon bitmap to the Desktop database. 
FPGetlcon retrieves the bitmap for a given icon as specified by its file creator and type. 
FPGetlconlnfo retrieves a description of an icon. This call can be used to determine the set of 

icons associated with a given application. Successive FPGetlconlnfo calls will return information on 
all icons associated with a given flle creator. 

FPAdd.APPL adds an APPL mapping for the specified application and its file creator. 

An overview of AFP calls 13-45 



FPRemoveAPPL removes the specified application from the list of APPL mappings 
corresponding to its file creator. It is the workstation client's responsibility to add and remove 
APPL mappings for applications that are added to or removed from the volume, respectively. For 
applications that are moved or renamed, the workstation client should remove the old APPL 
mapping before the operation and add a new APPL mapping with the updated information after 
the operation has been completed successfully. 

FPGetAPPL returns the next APPL mapping in the Desktop database's list of applications 
corresponding to a given file creator. 

FPAddComment stores a comment string associated with a particular file or directory on the 
volume. When adding a comment for a file or directory that already has an associated comment, the 
existing comment is replaced. 

FPRemoveComment removes the comment associated with a particular file or directory. 
FPGetComment retrieves the comment associated with a particular file or directory. 

AFP calls 

This section describes AFP calls, which are listed alphabetically. This section is intended as a 
reference source, allowing the reader to look up call descriptions as necessary. 

Each call description contains the following information: 

• a list of the input and output parameters 

• the result codes provided by the call 

• an explanation of how the call works 

• the access rights required to use the call 

• an illustration of the call's block format 

The workstation client of AFP sends each AFP call to the server in the form of a request block, to 
which the server responds with the 4-byte FPError result code plus a reply block. 

The FPWrite and FPAddlcon calls are exceptions in that the data to be written is not included in 
the command block but is passed by the underlying transport mechanism (ASP or its equivalent) as 
a separate block. 

For every AFP call, the underlying transport mechanism must return an FPError result code. The 
FPError values for each call are listed and explained. 

13-46 CHAPTER 13 Apple Talk Filing Protocol 



Some result codes can be returned by all AFP calls; the following result codes are not included in 
the descriptions of AFP calls. 

Result code 

No Err 

UserNotAuth 

MiscErr 

Description 

file server returns this value for every call that is successfully completed 

server returns this value to indicate that the user has not yet been properly 
authenticated 

server uses this value to map errors and message codes that don't have an 
equivalent AFP result code (for example, an error reading a disk sector) 

For calls that return an empty reply block, the reply block is not shown. 
Many AFP calls require a bitmap to be passed along with a block of parameters packed in 

bitmap order. Bitmap order means that the parameter corresponding to the least-significant bit 
that is set in the bitmap is packed first, followed by the parameter corresponding to the next most
significant bit that is set, and ending with the parameter corresponding to the most -significant bit 
that is set. 

AFP call descriptions use the following abbreviations and definitions to describe call parameters: 

Abbreviation 

bit 

byte 

EntityAddr 

int 

long 

Res Type 

string 

Description 

a single binary digit 

an 8-bit quantity 

a network-visible entity's internet address; its size and format are network
dependent 

a 2-byte quantity 

a 4-byte quantity 

a 4-byte signature used in a Macintosh Finder information field to specify a 
file creator or file type 

a group of up to 255 bytes, each representing an ASCII character; this group 
is preceded by a string-length byte, which is a value representing the 
number of characters in the string not including the string-length byte 

All numerical fields represent signed numbers unless otherwise indicated. 
The next page describes the format of the rest of the chapter. 

AFP calls 13-47 



FPC all 

Inputs 

Outputs 

Result codes 

Algorithm 

Rights 

Notes 

Block format 

13-48 FPCall 

A one-sentence, concise description of the call is given here. 

All input parameters are listed here, with a description of each. Numbers next to a list of 
parameters indicate the bit number of a corresponding bit in a multibyte field. 

All output parameters are listed here, with a description of each. Numbers next to a list of 
parameters indicate the bit number of a corresponding bit in a multibyte field. 

The values of FPError that might be returned are listed here, with an explanation of each. 
For brevity, some values of FPError (those that are common to most or all calls) are not 
shown here. 

A detailed description of the algorithm used to service this request is given here. 

The access privileges required to make this request are listed here. The absence of this 
section signifies that no special access privileges are required. 

This section provides additional notes about what is required to make this request, certain 
actions that the call does not do, or side effects. It is a catch-all for any information that 
does not belong in any other section. Not all call descriptions include this section. 

A pictorial description of the Command block and Reply block is displayed here. If the call 
returns only an FPError parameter, no Reply block will be shown. In some cases, this 
section will also include pictorial descriptions of some of the fields or parameters relevant 
to this call. 



FPAddAPPL 

Inputs 

Outputs 

Result codes 

Algorithm 

Rights 

Notes 

This request adds an APPL mapping to the Desktop database. 

SRejNum (int) 

DTRefNum (int) 

Directory ID (long) 

FileCreator (ResType) 

APPL Tag (long) 

PathType (byte) 

Pathname (string) 

FPError (long) 

ParamErr 

ObjectNotFound 

AccessDenied 

ObjectTypeErr 

session refnum 

Desktop database refnum 

ancestor directory identifier 

ftle creator of application corresponding to APPL mapping 
being added 

a user-defined tag stored with the APPL mapping 

indicates whether Pathname is composed of long names or 
short names: 

1 = short names 

2 = long names 

pathname to the application corresponding to APPL mapping 
being added 

Session refnum or Desktop database refnum is unknown; 
pathname is bad. 

Input parameters do not point to an existing file. 

User does not have the rights listed below. 

Input parameters point to a directory. 

An APPL mapping is added to the volume's Desktop database for the specified application 
and its location and its file creator. If an APPL mapping for the same application (same 
filename, same directory, and same FileCreator) already exists, it is replaced. 

The user must have search or write access to all ancestors except the application's parent 
directory, as well as write access to the parent directory. 

There may be more than one application in the Desktop database's list of APPL mappings 
for the given FileCreator. To distinguish among them, the APPL Tag parameter is stored 
with each APPL mapping. The tag information might be used to decide among these 
multiple applications. It is not interpreted by the Desktop database. 

(continued) • 

FPAddAPPL 13-49 



Block format 

13-SO FPAddAPPL 

The user must have previously called FPOpenDT for the corresponding volume. In 
addition, the application must be present in the specified directory before this request is 
issued. 

Request 

~1 byte (8 bits)~ 

~ 

1-

f-

1-

-

1-

f-

1-

f-

-

• • • 

AddAPPL function 

0 

DTRetNum 

Directory ID 

FileCreator 

APPL Tag 

Path Type 

Pathname 

-

-

-

-

-

-

-

-

-

-

• • • 



FPAddComment 

Inputs 

Outputs 

Result codes 

Algorithm 

Rights 

Notes 

This request adds a comment for a file or directory to the volume's Desktop database. 

SRefNum (int) 

D1RefNum (int) 

Directo1y ID (long) 

PathType (byte) 

Pathname (string) 

Comment (string) 

FPError (long) 

ParamErr 

ObjectNotFound 

AccessDenied 

session refnum 

Desktop database refnum 

directory identifier 

indicates whether Path name is composed of long names or 
short names: 

1 = short names 

2 = long names 

pathname to the file or directory to which the comment will 
be associated 

comment data to be associated with specified file or directory 

Session refnum or Desktop database refnum is unknown; 
pathname is bad. 

Input parameters do not point to an existing file or directory. 

User does not have the rights listed below. 

The comment data is stored in d1e Desktop database and associated with the specified 
file or directory. If the comment length is greater than 199 bytes, the comment will be 
truncated to 199 bytes and no error will be returned. 

To add a comment for a directory that is not empty, the user needs search access to all 
ancestors including the parent directory, as well as write access to the parent directory. To 
add a comment for an empty directory, the user needs search or write access to all 
ancestors except the parent directory, as well as write access to the parent directory. 

To add a comment for a file that is not empty, the user needs search access to all 
ancestors except the parent directory, as well as read and write access to the parent. To 
add a comment for an empty file, the user needs search or write access to all ancestors 
except the parent directory, as well as write access to the parent. 

The user must have previously called FPOpenDT for the corresponding volume. In 
addition, the specified file or directory must be present before this request is issued. 

(continued) • 

FPAddComment 13-51 



Block format 

A null byte will be added 
if necessary to make comment 

begin on an even boundary. 

13-52 FPAddComment 

~ 

~ 

~ 

-

• • • 

Request 

AddComment function 

0 

DTRefNum 

Directory ID 

Path Type 

Pathname 

-

-

-

-

• • • 

~-----------~-----------1 
~---------------------• • • 

Comment • • • 



FPAddlcon 

Inputs 

Outputs 

Result codes 

Algorithm 

Notes 

This request adds an icon bitmap to the volume's Desktop database. 

SRefNum (int) 

DTRefNum (int) 

FileCreator (ResType) 

FileType (ResType) 

JconType (byte) 

JconTag (long) 

BitmapSize (int) 

FPError (long) 

ParamErr 

/conTypeError 

session refnum 

Desktop database refnum 

file creator associated with icon 

file type associated with icon 

type of icon being added 

tag information to be stored with the icon 

size of the bitmap for this icon 

Session refnum or Desktop database refnum is unknown. 

New icon size is different from existing icon's size. 

A new icon is added to the Desktop database for the specified FileCreator and FileType. If 
an icon of the same FileCreator, File Type, and Icon Type already exists, the icon is replaced. 
However, if the new icon's size is different from the old icon, the server returns an 
IconTypeError result code. 

The user must have previously called FPOpenDT for the corresponding volume. The 
command block includes all input parameters except for the icon bitmap, which is sent to 
the server in an intermediate exchange of ASP packets. 

(continued) • 

FPAddlcon 13-53 



Block format Request 

~1 byte (8 bits)~ 

Addlcon function 

0 

1- DTRefNum -

r- -

1- FileCreator -

r- -

1- -

1- File Type -

1- -

Icon Type 

0 

~ -

1- Icon Tag -

r- -

1- BitmapSize -

13-54 FPAddlcon 



FPByteRangeLock 

This request locks or unlocks a specified range of bytes within an open fork. 

Inputs 

Outputs 

Result codes 

SRefNum (int) 

OFork.RefNum (int) 

Offset (long) 

Length (long) 

Un/ockF/ag (bit) 

Start!EndF/ag (bit) 

FPError (long) 

RangeStarl (long) 

ParamErr 

LockErr 

NoMoreLocks 

RangeOverlap 

RangeNotLocked 

session refnum 

open fork refnum 

offset to the first byte of the range to be locked or unlocked 
(can be negative if Start!EndFlag equals End) 

number of bytes to be locked or unlocked (a signed, positive 
long integer; cannot be negative except for the special value 
$FFFFFFFF). 

flag to indicate whether to lock or unlock range: 

0 =lock 

1 =unlock 

flag indicating whether the Offset field is relative to the 
beginning or end of the fork (this flag is valid only when 
locking a range): 

0 = Start (relative to beginning of fork) 
1 = End (relative to end of fork) 

number of the first byte of the range just locked; this number 
is valid only when returned from a successful lock command 

Session refnum or open fork refnum is unknown; a 
combination of Start!EndFlag and Offset specifies a range 
starting before the Oth byte. 
Some or all of the requested range is locked by another user. 

Server's maximum lock count has been reached. 

User tried to lock some or all of a range that the user already 
locked. 
User tried to unlock a range that was locked by another user 
or not locked at all. 

(continued) • 

FPByteRangeLock 13-55 



Algorithm FPByteRangeLock locks or unlocks a range of bytes for use by a user application. Bytes are 
numbered from 0 to $7FFFFFFF. The latter value is the maximum size of the fork. The end 
of fork (end of ftle in Macintosh terminology) is 1 greater than the number of the last 
byte in the fork. 

Lock conflicts are determined by OForkRefNum. That is, if a fork is opened twice, the 
two OForkRefNums are considered two different "users" in the discussion below, 
regardless of whether they were performed on the same or different sessions. 

If no user holds a lock on any part of the requested range, the server locks the range 
specified by this call. A user can hold multiple locks within the same open fork, up to a 
server-specific limit Locks cannot overlap. A locked range can start or extend past the end 
of fork; this does not move the end of fork or prevent another user from writing to the 
fork past the locked range. An Offset of 0, a Start/EndFlag set to Start, and a Length of 
$FFFFFFFF lock the entire fork to the maximum size of the fork. Specifying an offset 
other than 0, a Start/EndFlag set to Start, and a Length of $FFFFFFFF will lock a range 
beginning at Offset and extending to the maximum size of the fork. 

All locks held by a user are unlocked when the user closes the fork. Unlocking a range 
makes it available to other users for reading and writing. The server returns a 
RangeNotLocked result code if a user tries to unlock a range that was locked by another 
user or not locked at all. 

Part of a range cannot be unlocked. To unlock a range, the Start/EndFlag must be set to 
Start, the Length parameter must match the size of the range that was locked, and the 
Offset parameter must match the number of the first byte in the locked range. If the 
range was locked with the Start/EndFlag set to Start, use the same Offset to unlock the 
range. If the range was locked with the Start/EndFlag set to End, set Offset to the value 
of RangeStart that was returned by the server. 

The Start/EndFlag allows a lock to be offset relative to the end of fork. This enables a user 
to set a lock when the user does not know the exact end of fork, as can happen when 
multiple writers are concurrently modifying the fork. The server returns the number of 
the first locked byte. 

13-56 FPByteRangeLock 



Block format 

Start/EndFiag -

Request 

~lbyte(Sbits)~ 

ByteRangeLock function 

-I 1-

- OForkRefNum -

1- -

r- Offset -

1- -

1- -

1- Length -

1- -

Reply 

~1 byte (8 bits)~ 

-
r- UnlockFiag 

- RangeStart -

- -

FPByteRangeLock 13-57 



FPChangePassword 

Inputs 

Outputs 

Result codes 

Algorithm 

This request allows users to change their passwords. It is new in AFP Version 2.0, and 
it is optional and may not be supported by all servers. 

SRefNum (itl/) 

UAM (strit~g) 

FPError (lot~g) 

UserNotAuth 

BadUAM 

Ca//NotSupported 

AccessDenied 

ParamErr 

session refnum 

a string indicating which user authentication method to use 

UAM failed (specified old password doesn't match), or no 
user logged in yet on this session. 

UAM specified is not one supported with FPChangePassword. 

Workstation is using AFP Version 1.1; call is not supported by 
this server. 

FPChangePassword is not enabled for this user. 

User name is null, is greater than 31 characters, or does not 
exist. 

If the UAM specified is 1 Cleartxt Pas swrd 1 , the workstation sends the server 
its user name plus its old and new passwords in cleartext. The server looks up the 
password for that user; if it matches the old password sent in the packet, the new 
password will be saved for that user. 

If the UAM specified is 1 Randnum Exchange 1 , the workstation sends the server its 
user name, its old password encrypted with its new password, and its new password 
encrypted with its old password. The server looks up the password for that user, uses 
that password as a key to decrypt the new password, and uses the result as a key to 
decrypt the old password. If the final result matches what the server knew to be the old 
password, then the new password will be saved for that user. 

Any password less than 8 bytes long will be padded (suffixed) with null bytes to its full 
8-byte length. 

Rights The server need not support this call (see the FPGetSrvrinfo call). In addition, the user 
may not have been given the ability to change a password. 

13-58 FPChangePassword 



Notes 

Block format 

A null byte will be 
added if necessary to 

make user name begin 
on an even boundary. 

A null byte will be 
added if necessary 

to make old password 
begin on an even boundary. 

The granting of the ability to change a password is an administrative function and is 
outside the scope of this protocol specification. 

As in FPLogin, DES is used to encrypt and decrypt passwords if the specified UAM is 
'Randnum Exchange'. 

Request 

~I byte (8 bits)~ 

• • • 

ChangePassword function 

0 

User name • • • 

Request 

~lbyte(8birs)~ 

ChangePassword function 

0 

: UAM : 

~-·-~~~~-~~~-:-~~~~~-~~: 1 
---------------------~ 

• • User name • • • • 

~:::::::::~::::::::::: ::::::;;~:~~:::::~ 
• Old password • • 
• in cleartext • • (encrypted with ! 
• (S bytes) • • new password) • 

1~---------~1 I (S ~) I 
New password • • New password • • • 

in cleartext • • (encrypted with 
(8 bytes) • • old password) I j (8 bytes) 

• • • 
I 

A null byte will be 
added if necessary to 
make user name begin 
on an even boundary . 

A null byte will be 
added if necessary 
to make old password 
begin on an even boundary. 

FPChangePassword 13·59 



FPCloseDir 

Inputs 

Outputs 

Result codes 

Algorithm 

Notes 

Block format 

13-60 FPCloseDir 

This request closes a directoty and invalidates its directoty identifier. 

SRefNum (int) 

Volume ID (int) 

Directory ID (long) 

FPError (long) 

ParamErr 

session refnum 

volume identifier 

directoty identifier 

Session refnum, volume identifier, or directoty identifier is 
unknown. 

The FPCloseDir request invalidates the Directoty 10. 

This request should be used only for variable Directoty ID volumes. The user must have 
previously called FPOpenVol for this volume and FPOpenDir for this directoty. 

Request 

~I byte (8 bits) ---j 

CloseDir function 

0 

- Volume lD -

- -

- Directory ID -

- -



FPCloseDT 

Inputs 

Outputs 

Result codes 

Algorithm 

Notes 

Block format 

This request informs the server that the workstation no longer needs the volume's 
Desktop database. 

SRefNum (int) 

DTRefNum (int) 

FPError (long) 

session refnum 

Desktop database refnum 

ParamErr Session refnum or Desktop database refnum is unknown. 

The server invalidates the DTRefNum. 

The user must first have made a successful FPOpenDT call. 

Request 

CloseDT function 

0 

f- DTRefl\um -

FPCloseDT 13-61 



FPCloseFork 

Inputs 

Outputs 

Result codes 

Algorithm 

Block format 

This request closes a fork that was opened by FPOpenFork. 

SRejNum (int) 

OForkRejNum (int) 

FPError (long) 

ParamErr 

session refnum 

open fork refnum 

Session refnum or open fork refnum is unknown. 

The server flushes and then closes the open fork, invalidating the OForkRefNum. If the 
fork had been written to, the file's modification date will be set to the server's clock at 
this time. 

Request 

CloscFork funt1ion 

0 

- OForkReiNum -

13-62 FPCloseFork 



FPCloseVol 

Inputs 

Outputs 

Result codes 

Algorithm 

Notes 

Block format 

This request informs the server that the workstation no longer needs the volume. 

SRejNum (int) 

Volume ID (int) 

FPError (long) 

ParamErr 

session refnum 

volume identifier 

Session refnum or volume identifier is unknown. 

The FPCloseVol request invalidates the volume identifier. After making this call, the user 
can make no further calls to this volume without frrst making another FPOpenVol call. 

The user must have previously issued an FPOpenVol call for this volume. 

Request 

I I h)1C (8hits)-j 

CloseVol function 

0 

- Volume 10 -

FPCloseVol 13·63 



FPCopyFile 

Inputs 

This request copies a file from one location to another on the same file setver. It is 
optional and may not be supported by all setvers. Text in boldface applies to AFP 
Version 2.0 only. 

SRejNum (int) 

Source Volume ID (int) 

Source Directory ID (long) 

Source Path Type (byte) 

Source Pathname (string) 

Dest Volume ID (int) 

Dest Directory ID (long) 

Dest Path Type (byte) 

Dest Pathname (string) 

NewType (byte) 

NewName (string) 

session refnum 

source volume identifier 

source ancestor directory identifier 

indicates whether Source Pathname is composed of long 
names or short names: 

1 = short names 

2 = long names 

pathname of the file to be copied (cannot be null) 

destination volume identifier 

destination ancestor directory identifier 

indicates whether Dest Pathname is composed of long names 
or short names (same values as Source PathType) 

pathname to the destination parent directory (may be null) 

indicates whether NewName is a long name or a short name 
(same values as Source PathType) 

name to be given to the copy (may be null) 

Outputs FPError (long) 

13-64 FPCopyFile 



Result codes 

Algorithm 

Rights 

Notes 

ParamErr 

ObjectNotFound 

ObjectExists 

AccessDenied 

VolLocked 

CallNotSupported 

DenyConflict 

DtskFull 

ObjectTypeErr 

Session refnum, volume identifier, or pathname type is 
unknown; pathname or NewName is bad. 
The source file does not exist; ancestor directory is unknown. 
A file or directory by the name New Name already exists in the 
destination parent directory. 
User does not have the right to read the file or to write to the 
destination; in AFP 1.1, the destination volume is ReadOnly. 

In AFP 2.0, the destination volume is ReadOnly. 
Call is not supported by this server. 
The flle cannot be opened for Read, DenyWrite. 
No more space exists on the destination volume. 
Source parameters point to a directory. 

FPCopyFile copies a ftle to a new location on the seiVer. The source and destination can be 
on the same or on different volumes. 

The server tries to open the source ftle for Read, DenyWrite access. If this fails, the server 
returns a DenyConflict result code to the workstation. If the server successfully opens 
the ftle, it copies the me to the directory specifted by the destination parameters. 

The copy is given the name specified by the New Name parameter. If NewName is null, 
the server gives the copy the same name as the original. The file's other name Oong or 
short) is generated as described in "Catalog Node Names" earlier in this chapter. A unique 
file number is assigned to the ftle. The server also sets the file's Parent ID to the Directory 
ID of the destination parent directory. All other me parameters remain the same as the 
source file's parameters. The modification date of the destination parent directory is set 
to the server's clock. 

The user must have search access to all ancestors of the source me, except the source 
parent directory, and read access to the source parent directory. Further, the user must 
have search or write access to all ancestors of the destination ftle, except the destination 
parent directory, and write access to the destination parent directory. 

The user must have previously issued the FPOpenVol request for both the source and 
destination volumes. 

(continued) • 

FPCopyFile 13-6S 



Block format Request 

~I byte(8bits)~ 

CopyFile function 

0 

1- Source Volume ID -

1- -

1- Source Directory ID -

1- -

- Dest Volume ID -

1- -

- Dest Directory ID -

- -

Source PathType 

• • • Source Pathname • • • 

Dest PathType 

• • • Dest Pathname • • • 

NewType 
I 

• • • New Name • • • 



FPCreateDir 

Inputs 

Outputs 

Result codes 

Algorithm 

This request creates a new directory. Text in boldface applies to AFP Version 2.0 only. 

SRefNum (int) 

Volume ID (int) 

Directory ID (long) 

Path Type (byte) 

Pathname (string) 

FPError (long) 

session refnum 

volume identifier 

ancestor directory identifier 

indicates whether Pathname is composed of long names or 
short names: 

1 = short names 

2 = long names 

pathname, including name of new directory (cannot be null) 

New Directory ID (long) identifier of new directory 

ParamErr 

ObjectNotFound 

ObjectExists 

AccessDenied 

VolLocked 

FlatVol 

DiskFull 

Session refnum, volume identifier, or pathname type is 
unknown; pathname is null or bad. 

Ancestor directory is unknown 

A file or directory already exists by that name. 

User does not have the rights listed below; in AFP 1.1, the 
volume is Read Only. 

In AFP 2.0, the destination volume is ReadOnly. 

The volume is flat and does not support directories. 

No more space exists on the volume. 

If the volume is hierarchical, an empty directory is created with the name specified in 
Pathname. The file server assigns the directory a unique (per volume) New Directory !D. 
Its owner ID is set to the user ID of the user making the call, and its group ID is set to 
the ID of the user's primary group, if one has been specified for the user. 

(continued) • 

FPCreateDir 13-67 



Rights 

Notes 

Block format 

Access rights for the directory are initially set to read, write, and search for the owner, 
with no rights for the group or world. Finder information is set to 0, and all directory 
attributes are initially cleared. The directory's creation date and modification date, and the 
modification date of the parent directory, are set to the server's clock. The directory's 
backup date is set to $80000000, signifying that this directory has never been backed up. 

The directory's other name Oong or short) is generated as described in "Catalog Node 
Names" earlier in this chapter. 

The user must have search or write access to all ancestors, except this directory's parent 
directory, as well as write access to the parent directory. 

The user must have previously called FPOpenVol for this volume. 

Request 

~1 byte(Bbits)~ 

1-

1-

f-

1-

• • • 

CreateDir function 

0 

Volume ID 

Directory ID 

Path Type 

Pathname 

-

-

-

-

• • • 

Reply 

~1 byte (8 bits)~ 

-

f- New Directory ID -

1- -

13-68 FPCreateDir 



FPCreateFile 

Inputs 

Outputs 

Result codes 

This request creates a file. Text in boldface applies to AFP Version 2.0 only. 

SRefNum (int) 

Volume ID (int) 

Directory ID (long) 

CreateF/ag (bit) 

Path Type (byte) 

Pathname (string) 

FPError (long) 

ParamErr 

ObjectNotFound 

ObjectExists 

ObjectTypeErr 

AccessDenied 

Vollocked 

FileBusy 

DiskFu/1 

session refnum 

volume identifier 

ancestor directory identifier 

a flag that specifies a hard or soft create: 

0 = soft create 

1 = hard create 

indicates whether Pathname is composed of long names or 
short names: 

1 = short names 

2 = long names 

pathname, including name of new file (cannot be null) 

Session refnum, volume identifier, or pathname type is 
unknown; pathname is null or bad. 

Ancestor directory is unknown. 

If attempting a soft create, a file by that name already exists. 

A directory by that name already exists. 

User does not have the rights listed below; in AFP 1.1, the 
volume is ReadOnly. 

In AFP 2.0, the destination volume is ReadOnly. 
If attempting a hard create, the file already exists and is open. 

No more space exists on the volume. 

(continued) • 

FPCreateFile 13-69 



Algorithm 

Rights 

Notes 

Block format 

13-70 FPCreateFile 

For a soft create, if a flle by that name already exists, the server returns an ObjectExists 
result code. Otherwise, it creates a new ftle and assigns it the name specified in Pathname. 
A unique file number is assigned to the file. Finder information is set to 0, and all file 
attributes are initially cleared. The ftle's creation and modification dates, and the 
modification date of the flle's parent directory, are set to the server's clock. The file's 
backup date is set to $80000000, signifying that this ftle has never been backed up. The 
ftle's other name Oong or short) is generated as described in "Catalog Node Names" earlier 
in this chapter. The lengths of both of the ftle's forks are set to 0. 

In a hard create, if the ftle already exists and is not open, it is deleted and then recreated. All 
ftle parameters (including the creation date) are reinitialized as described above. 

For a soft create, the user must have search or write access to all ancestors, except this 
file's parent directory, as well as write access to the parent directory. For a hard create, the 
user must have search access to all ancestors, except the parent directory, as well as read 
and write access to the parent directory. 

The user must have previously called FPOpenVol for this volume. 

Create Flag 

Request 

~1 byte (8 bits) -j 

- - I 

-

-

-

-

• • • 

CreateFile function 

Volume JD 

Directory ID 

Path Type 

Pathname 

-

-

-

-

• • • 



FPDelete 

Inputs 

Outputs 

Result codes 

Algorithm 

This request deletes a file or directory. Text in boldface applies to AFP Version 2.0 only. 

SRefNum (int) 

Volume ID (int) 

Directory ID Oong) 

PathType (byte) 

Pathname (string) 

FPError (long) 

ParamErr 

ObjectNotFound 

DirNotEmpty 

FileBusy 

AccessDenied 

Objectlocked 

Vollocked 

session refnum 

volume identifier 

ancestor directory identifier 

indicates whether Pathname is composed of long names or 
short names: 

1 = short names 

2 = long names 

pathname of file or directory to be deleted (may be null if a 
directory is to be deleted) 

Session refnum, volume identifier, or pathname type is 
unknown; pathname is bad. 

Input parameters do not point to an existing ftle or directory. 

The directory is not empty. 

The file is open. 

User does not have the rights listed below; in AFP 1.1, the file 
or directory is marked Deleteinhibit; in AFP 1.1, the volume is 
ReadOnly. 

In AFP 2.0, the ftle or directory is marked 
Deleteinhibit. 
In AFP 2.0, the volume is ReadOnly. 

If the CNode to be deleted is a directory, the server checks to see if it contains any 
offspring. If it contains offspring, the server returns a DirNotEmpty result code. If a ftle 
is to be deleted, it must not be currently open by any user or a FileBusy result code is 
returned. The modification date of the deleted file or directory's parent directory is set to 
the server's clock. 

(continued) • 

FPDelete 13· 71 



Rights 

Notes 

Block format 

13-72 FPDelete 

The user must have search access to all ancestors, except the file or directory's parent 
directory, as well as write access to the parent directory. If a directory is being deleted, the 
user must also have search access to the parent directory; for a file, the user must also 
have read access to the parent directory. 

The user must have previously called FPOpenVol for this volume. 

Request 

~~byte (H bits)~ 

-

f-

r-

I-

• • • 

Delete function 

0 

Volume ID 

Directory ID 

Path Type 

Pathnamc 

-

-

-

-

• • • 



FPEnumerate 

This request lists the contents of a directory. 

Inputs 

Outputs 

SRejNum (int) 

Volume ID (int) 

Directory ID Gong) 
File Bitmap (int) 

Directory Bitmap (int) 

ReqCount (int) 

Start Index (int) 

MaxReplySize (int) 
PathType (byte) 

Pathname (string) 

FPError Gong) 
File Bitmap (int) 
Directory Bitmap (int) 

session refnum 

volume identifier 

ancestor directory identifier 

bitmap describing which parameters are to be returned if the 
enumerated offspring is a file (the bit corresponding to each 
desired parameter should be set); this field is the same as that 
in the FPGetFileDirParms call and can be null 

bitmap describing which parameters are to be returned if the 
enumerated offspring is a directory (the bit corresponding to 
each desired parameter should be set); this field is the same as 
that in the FPGetFileDirParms call and can be null 
maximum number of offspring structures to be returned 

directory offspring index 

maximum size of reply block 
indicates whether Pathname is composed of long names or 
short names: 
1 = short names 
2 = long names 

pathname to desired directory 

copy of input parameter 
copy of input parameter 

(continued) • 

FPEnumerate 13-73 



Outputs 

Result codes 

Algorithm 

ActCount (int) 

ActCount structures 
containing a 2-byte 
header and parameters 
in the form: 

ParamErr 

DirNotFound 

Bitmap Err 

AccessDenied 
ObjectNotFound 

Object Type Err 

actual number of structures returned 

Strnct Length (byte) unsigned length of this structure, 
including these two header bytes, 
and rounded up to the nearest 
even number 

File/DirFlag (bit) flag indicating whether offspring 
is a file or directory: 

Offspring parameters 

0 = ftle 
1 = directory 

packed in bitmap order, with a 
trailing null byte if necessary to 
make the length of the entire 
structure even 

Session refnum, volume identifier, or pathname type is 
unknown; pathname is bad; MaxReplySize is too small to hold 
a single offspring structure. 

Input parameters do not point to an existing directory. 

An attempt was made to retrieve a parameter that cannot be 
retrieved with this call; an attempt was made to retrieve the 
Directory ID for a directory on a variable Directory ID 
volume; both bitmaps are empty. 

User does not have the rights listed below. 

No more offspring exist to be enumerated. 

Input parameters pointed to a file. 

The FPEnumerate call enumerates a directory as specified by the input parameters. If the 
File Bitmap is empty, only directory offspring are enumerated, and the Start Index can 
range from 1 to the total number of directory offspring. Similarly, if the Directory Bitmap 
is empty, only file offspring are enumerated, and the Start Index can range from 1 to the 
total number of file offspring. If both bitmaps have bits set, the Start Index can range 
from 1 to the total number of offspring. In this case, offspring structures for both files 
and directories are returned. These structures are not returned in any particular order. 

This call is completed when the number of structures specified by ReqCount has been 
inserted into the reply block, when the reply block is full, or when no more offspring exist 
to be enumerated. No partial offspring structures are returned. 

13-74 FPEnumerate 



Rights 

Notes 

The server retrieves the specified parameters for each enumerated offspring and packs 
them, in bitmap order, in structures in the reply block. The server inserts one copy of the 
input bitmaps before all the structures. 

The server needs to keep variable-length parameters, such as Long Name and Short Name, 
at the end of each structure. In order to do this, the server represents variable-length 
parameters in the bitmap order as fixed-length offsets (integers). Each offset is measured 
from the start of the parameters in each structure (not from the start of the bitmap or 
the start of the header bytes) to the start of the variable-length field. Each structure will 
be padded (sufftxed) with a null byte if necessary to make its length even. 

If NoErr is returned, all the structures in the reply block are valid. If any error result code is 
returned, no valid offspring structures exist in the reply block. 

If the Offspring Count bit of the Directory Bitmap is set, the server will adjust the 
Offspring Count of each directory to reflect what access rights the user has to that 
directory. For example, if a particular directory contains three ftle and two directory 
offspring, the server will return its Offspring Count as 2 if the user has only search access 
to the directory, 3 if the user has only read access to the directory, or 5 if the user has 
both search and read access to the directory. 

The user must have search access to all ancestors except this directory. In addition, the 
user needs search access to this directory in order to enumerate directory offspring and 
read access in order to enumerate ftle offspring. 

The user must have previously called FPOpen Vol for this volume. 

Because enumerating a large directory can take several calls and other users may be adding 
to or deleting from the directory, enumeration can miss offspring or return duplicate 
offspring. To enumerate a directory accurately, the user must enumerate until an 
ObjectNotFound result code is returned and then ftlter out duplicate entries. 

A given offspring is not guaranteed to occupy the same index number in the parent 
directory from one enumeration to the next. 

(continued) • 

FPEnumerate 13-7S 



Block format Request 

I ' byte (8 bits) I 

-

-

-
-

-

-

-

-

f-

• • • 

13-76 FPEnumerate 

Enumerate function 

0 

Volume ID 

Directory ID 

File Bitmap 

Directory Bitmap 

RcqCount 

Stan Index 

MaxRcplySize 

Path Type 

Path name 

-

-

-

-

-

-

-

-

-

• • • 

File/Dir Flag 

A null b)'te will 
be added to each 

structure if necessary 
to make the length of 

the Slructure even. 

Reply 

I ' b)1C (8 bits) I 

I- File Bitmap -

f- Directory Bitmap -

f- Act Count -

Struct Length 

- ~ I 

• • • OITspring parameters • • • 

~ ---- -----; ------ ---- -I 

.......,_ 

~ 
Repeated 
Act Count 
times 



FPFlush 

Inputs 

Outputs 

Result codes 

Algorithm 

Notes 

Block format 

This request writes to a disk any volume data that has been modified. 

SRefNum (int) 

Volume ID (int) 

FPError (long) 

session refnum 

volume identifier 

ParamErr Session refnum or volume identifier is unknown. 

The FPFlush call flushes (writes to disk) as much changed information as possible. This 
may include flushing 

• all forks opened by the user 

• volume catalog information changed by the user 

• any updated volume data structures 

AFP does not specify that the server must perform all of these functions. Therefore, 
users should not rely on the server to perform any particular function. 

The volume's modification date may change as a result of this call, but users should not 
rely on it; updating of the date is implementation-dependent. If no volume information 
was changed since the last FPFlush call, the date may or may not change. 

The user must have previously called FPOpenVol for this volume. 

Request 

Flush function 

0 

~ Volume ID -

FPFiush 13-77 



FPFlushFork 

Inputs 

Outputs 

Result codes 

Algorithm 

Notes 

Block format 

This request writes to a disk any data buffered from previous FPWrite calls. 

SRejNum (int) 

OForkRejNum (int) 

FPError (long) 

ParamErr 

session refnum 

open fork refnum 

Session refnum or open fork refnum is unknown. 

The FPFiushFork call writes to a disk any data buffered by the server from previous 
FPWrite calls. If the fork has been modified, the server sets the file's modification date to 
the server's clock. 

In order to optimize disk access, the server may buffer FPWrite calls made to a particular 
file fork. Within the constraints of performance, the server flushes each fork as soon as 
possible. The workstation client can force the server to flush any buffered data issuing 
this call. 

Request 

I I b)1C (8 bits) I 
FlushFork function 

0 

r- OForkRef};um -

13-78 FPFiushFork 



FPGetAPPL 

Inputs 

Outputs 

Result codes 

Algorithm 

This request retrieves an APPL mapping from the volume's Desktop database. 

SRefNum (int) 

DTRefNum (int) 

FileCreator (ResType) 

APPL Index (int) 

Bitmap (int) 

FPError (long) 

APPL Tag (long) 

File parameters requested 

ParamErr 

ItemNotFound 

Bitmap Err 

session refnum 

Desktop database refnum 

file creator of application corresponding to the APPL mapping 

index of the APPL mapping to be retrieved 

bitmap describing which parameters of the application me are 
to be returned; this field is the same as File Bitmap in the 
FPGetFileDirParms call 

tag information associated with the APPL mapping 

Session refnum or Desktop database refnum is unknown. 

No files in the Desktop database match the input parameters. 

An attempt was made to retrieve a parameter that cannot be 
obtained with this call. 

For each FileCreator, the Desktop database contains a list of APPL mappings. Each APPL 
mapping contains the parent Directory ID and CNode name of an application associated 
with the FileCreator, as well as an APPL Tag that can be used to distinguish among the 
APPL mappings (the APPL Tag is left uninterpreted by the Desktop database). 

Information about the application file associated with each APPL mapping can be 
obtained by making successive FPGetAPPL requests with APPL Index varying from 1 to 
the total number of APPL mappings stored in the Desktop database for that FileCreator. 
If APPL Index is greater than the number of APPL mappings in the Desktop database for 
the specified FileCreator, an ItemNotFound result code is returned. An APPL index of 0 
returns the first APPL mapping, if one exists in the Desktop database. 

The server retrieves the specified parameters for the application file and packs them, in 
bitmap order, in the reply block. 

(continued) • 

FPGetAPPL 13-79 



Rights 

Notes 

Block format 

13-80 FPGetAPPL 

The user must have search access to all ancestors except the parent directory and read 
access to the parent directory of the application about which information will be 
returned. 

The user must have previously called FPOpenDT for the corresponding volume. 

Request 

GetAPPL function 

0 

r- DTRefNum -

r- -

I- FileCreator -

..._ -

- APPL Index -

- Bitmap -

Reply 

~1 byte (8 bits)~ 

-

• • • 

Bitmap 

APPL Tag 

File parameters 

-

-

-

-

• • • 



FPGetComment 

Inputs 

Outputs 

Result codes 

Algorithm 

Rights 

Notes 

This request retrieves a comment associated with a specified file or directory from the 
volume's Desktop database. 

SRefNum (int) 

DTRefNum (int) 

Directory ID (long) 

PathType (byte) 

Pathname (string) 

FPError (long) 

Comment (string) 

ParamErr 

ObjectNotFound 

AccessDenied 

ItemNotFound 

session refnum 

Desktop database refnum 

directory identifier 

indicates whether Pathname is composed of long names or 
short names: 
1 = short names 

2 = long names 

pathname to desired file or directory 

comment text 

Session refnum or Desktop database refnum is unknown. 

Input parameters do not point to an existing file or directory. 

User does not have the rights listed below. 

No comment was found in the Desktop database. 

The comment for the specified file or directory, if it is found in the volume's Desktop 
database, is returned in the reply block. 

If the comment is associated with a directory, the user must have search access to all 
ancestors, including the parent directory. If the comment is associated with a file, the 
user must have search access to all ancestors, except the parent directory, and read access 
to the parent directory. 

The user must previously have called FPOpenDT for the corresponding volume. In 
addition, the file or directory must exist before this call is issued. 

(continued) • 

FPGetComment 13·81 



Block format Request 

~1 b)1e (8 bits) ----t 

1-

1-

1-

1-

• • • 

13-82 FPGetComment 

GetComment fun<.1ion 

0 

DTRefl\lum 

Directory ID 

Path Type 

Pathname 

-

-

-

-

• • • 

Reply 

~1 byte (8 bit~) ----t 
• • • Comment 

• • • 



FPGetFileDirParms 

Inputs 

This request retrieves parameters for a CNode (either a file or a directory). Text in 
boldface applies to AFP Version 2.0 only. 

SRefNum (int) 

Volume ID (int) 

Directory ID (long) 

File Bitmap (int) 

session refnum 

volume identifier 

ancestor directory identifier 

bitmap describing which parameters are to be returned if the 
CNode is a file (the bit corresponding to each desired 
parameter should be set) 

0 Attributes (int), consisting of the following flags: 

0 Invisible 

1 MultiUser 

2 System 

3 DAlreadyOpen 

4 RAlreadyOpen 

5 ReadOnly(called Writebzhibit in AFP 2.0) 

6 BackupNeeded 

7 Re11ame!tzhibit 

8 Deleteltzhibit 

10 Copy Protect 

15 Set/Clear (used in FPSetFileDirParms) 

1 Parent Directory ID (long) 

2 Creation Date (long) 

3 Modification Date (long) 

4 Backup Date (long) 

5 Finder Info (32 bytes) 

6 Long Name (int) 

7 Short Name (int) 

8 File Number (long) 

9 Data Fork Length (long) 

10 Resource Fork Length (long) 

13 ProDOS Itifo (6 bytes) 
(continued) • 

FPGetFileDirParms 13-83 



Directory Bitmap (int) bitmap describing which parameters are to be returned if the 
CNode is a directory (the bit corresponding to each desired 
parameter should be set) 

PathType (byte) 

Pathname (string) 

13-84 FPGetFileDirParms 

0 Attributes (int), consisting of the following flags: 

0 Invisible 

2 System 

6 BackupNeeded 

7 Renamelnhibit 
8 Deletelnhibit 

1 Parent Directory ID Oong) 

2 Creation Date Oong) 

3 Modification Date Gong) 

4 Backup Date (long) 

5 Finder Info (32 bytes) 

6 Long Name (int) 

7 Short Name (int) 

8 Directory lD Oong) 

9 Offspring Count (int) 

10 Owner ID Oong) 

11 Group ID Oong) 

12 Ac~ Rights Oong), composed of the access rights 
for owner, group, and world, and a User Access Rights 
Summary byte (UARights) 

13 ProDOS Info (6 bytes) 

indicates whether Pathname is composed of long names or 
short names: 
1 = short names 
2 = long names 
pathname to desired file or directory 



Outputs 

Result codes 

Algorithm 

FPError Oong) 
File Bitmap (int) 

Directory Bitmap (int) 

File/DirF/ag (bit) 

Parameters requested 

ParamErr 

ObjectNotFound 

BitmapErr 

AccessDenied 

copy of input parameter 

copy of input parameter 

flag that indicates whether CNode is a file or a directory: 

0 =file 

1 = directory 

Session refnum, volume identifier, or pathname type is 
unknown; pathname is bad. 

Input parameters do not point to an existing file or directory. 

An attempt was made to retrieve a parameter that cannot be 
obtained with this call. 

User does not have the rights listed below. 

The server packs the requested parameters in the reply block in the order specified by the 
appropriate bitmap and includes a File/DirFlag indicating whether the CNode was a ftle or a 
directory. A copy of the input bitmaps is inserted before the parameters. 

The server needs to keep variable-length parameters, such as Long Name and Short Name, 
at the end of the block. In order to do this, the server represents variable-length 
parameters in the bitmap order as fiXed-length offsets (integers). Each offset is measured 
from the start of the parameters (not from the start of the bitmap) to the start of the 
variable-length field. The actual variable-length fields are then packed after all ftxed-length 
fields. 

If the CNode exists and both bitmaps are null, no error is returned; the File Bitmap, 
Directory Bitmap, and File/DirFlag are returned with no other parameters. 

If a directory's access rights are requested, the server returns an Access Rights long 
(4-byte quantity) containing the read, write, and search access privileges corresponding to 
owner, group, and world. The upper byte of the Access Rights long is the User Access 
Rights Summary byte, which indicates what privileges the user has to this directory. The 
most-significant bit in the User Access Rights Summary byte is the Owner bit. This bit 
indicates whether or not the user is the owner of the directory. It is also set if the 
directory is not owned by any registered user. 

(continued) • 

FPGetFileDirParms 13-85 



Rights 

Notes 

If the Offspring Count bit of the Directory Bitmap is set, the seiVer will adjust the 
Offspring Count of each directory to reflect what access rights the user has to that 
directory. For example, if a particular directory contains three ftle and two directory 
offspring, the seiVer will return its Offspring Count as 2 if the user has only search access 
to the directory, 3 if the user has only read access to the directory, or 5 if the user has 
both search and read access to the directory. 

The user must have search access to all ancestors except this CNode's parent directory. If 
the CNode is a directory, the user also needs search access to the parent directory. If the 
CNode is a file, the user needs read access to the parent directory. 

The user must have previously called FPOpenVol for this volume. 

Most of the Attributes requested by this call are stored in corresponding flags within the 
CNode's Finder Info record. 

13-86 FPGetFileDirParms 



Block format Request 

~1 byte (8 bits) -j 

1-

1-

-

-

1-

1-

• • • 

GetFileDirParms function 

0 

Volume ID 

Directory ID 

File Bitmap 

Directory Bitmap 

Path Type 

Pathname 

-

-

-

-

-

-

• • • 

File/DirFlag 

Reply 

~1 byte (8 bits) -j 

1-

1-

- ~I 

• • • 

File Bitmap 

Directory Bitmap 

0 

Parameters 

-

-

• • • 

(continued) • 

FPGetFileDirPanns 13-87 



FlleBitmap 

File Number ---------, 

Data Fork Length -------..., 

Resource Fork Length -------. 

ProDOS Info -----, 

Short Name 

Long Name 

Finder Info ----' 

Backup Date -------~ 

Modification Date --------~ 
Creation Date ______ ...... 

Parent Directory ID -------...J 
Attributes ________ __, 

File Attributes 

Deletelnhibit ---------. 

CopyProtect ---------. 

Set/Clear 

Renamelnhibit 

BackupNeeded 

Writelnhibit (ReadOnly) 

RAireadyOpen 

DAireadyOpen 

System 

MultiUser 

Invisible 

1~ FPGetFileDirParms 

Directory Bitmap 

DirectoryiD --------..., 

Offspring Count -------..., 

Owner 10 ------..., 

Group 10 -----.. 

Access Rights ------, 

ProDOS Info ---.. 

Short Name 

Long Name 

Finder Info -----' 

Backup Date -----' 

Modification Date --------~ 
Creation Date ______ ...... 

Parent Directory 10 --------' 
Attributes ________ __, 

Renainelnhibit 

Backup Needed 
System 

Invisible 

Owner 

Write 

Read 

Search 

Directory Attributes 

Access Rights 

I 
I 

0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 I 

I 

UARights 

World 

Group 

Owner 



FPGetForkParms 

Inputs 

Outputs 

Result codes 

Algorithm 

Rights 

This request retrieves parameters for a file associated with a particular open fork. Text in 
boldface applies to AFP Version 2.0 only. 

SRefNum (int) 

OForkRefNum (int) 

Bitmap (int) 

FPError (long) 

Bitmap (int) 

File parameters requested 

ParamErr 

BitmapErr 

AccessDenied 

session refnum 

open fork refnum 

bitmap describing which parameters are to be retrieved (the 
bit corresponding to each desired parameter should be set); 
this field is the same as File Bitmap in the FPGetFileDirParms 
call 

copy of the input parameter 

Session refnum or open fork refnum is unknown. 

An attempt was made to retrieve a parameter that cannot be 
obtained with this call; bitmap is null. 

Fork was not opened for read (this code is never returned 
in AFP Version 2.0). 

The FPGetForkParms call retrieves the specified par2meters for the file. The server packs 
the parameters, in bitmap order, in the reply block. 

Variable-length parameters are kept at the end of the block. In order to do this, the server 
represents variable-length parameters in the bitmap order as fixed-length offsets 
(integers). These offsets are measured from the start of the parameters to the start of 
the variable-length fields. The actual variable-length fields are then packed after all fixed
length fields. 

This call retrieves the length of the fork indicated by OForkRefNum; a BitmapErr result 
code is returned if an attempt is made to retrieve the length of the file's other fork. 

In AFP Version 1.1, the fork must be open for read by the user. In AFP Version 2.0, the 
fork need not be open for read to retrieve a IDe's parameters. 

(continued) • 

FPGetForkParms 13-89 



Block format Request 

~1 byte(Sbit'i)--j 

GetforkPannc; function 

0 

1-- OForkRefNum -

1-- Bitmap -

13-90 FPGetForkParms 

Reply 

~1 byte (8 bits) --j 

-

• • • 

Bitmap 

File parameters 

-

• • • 



FPGetlcon 

Inputs 

Outputs 

Result codes 

Algorithm 

Notes 

This request retrieves an icon from the volume's Desktop database. 

SRefNum (int) 

DTRefNum (int) 

FileCreator (ResType) 

FileType (ResType) 

Icon Type (byte) 

Length (int) 

FPError (long) 

Icon Bitmap (bytes) 

ParamErr 

ItemNotFound 

session refnum 

Desktop database refnum 

file creator of files with which the icon is associated 

file type of files with which the icon is associated 

preferred icon type 

the number of bytes reserved for icon bitmap 

the actual bitmap for the icon 

Session refnum or Desktop database refnum is unknown. 

No icon corresponding to the input specification was found 
in the Desktop database. 

The server retrieves an icon bitmap from the Desktop database, as specified by its 
FileCreator, FileType, and IconType. If the server does not find a matching icon, it returns 
an ItemNotFound result code. 

An input Length value of 0 is acceptable to test for the presence or absence of a particular 
icon. If Length is less than the actual size of the icon bitmap, only.Length bytes will be 
returned. 

The user must have previously called FPOpenDT for the corresponding volume. 

(continued) • 

FPGetlcon 13-91 



Block format Request 

~1 byte(Sbits)j 

Getlcon function 

0 

- DTRefNum -

- -

- FileCreator -

- -

- -

- File Type -

r- -

Icon Type 

0 

..... Length -

13-92 FPGetlcon 

Reply 

~-1 byte (8 bits)~ 

I I 
• • • 
I 

Icon Bitmap • • • 
I 



FPGetlconlnfo 

Inputs 

Outputs 

Result codes 

Algorithm 

Notes 

This request retrieves icon information from the volume's Desktop database. 

SRefNum (int) 

DTRefNum (int) 

FileCreator (ResType) 

Icon!rzdex (int) 

FPError (long) 

IconTag (long) 

FileType (ResType) 

Icon Type (byte) 

Size (int) 

ParamErr 

ItemNotFound 

session refnum 

Desktop database refnum 

file creator of files with which the icon is associated 
index of requ<:::sted icon 

tag information associated with the requested icon 

the file type of the requested icon 

the type of the requested icon 

the size of the icon bitmap 

Session refnum or Desktop database refnum is unknown. 

No icon corresponding to the input specification was found 
in the Desktop database. 

The server retrieves information about an icon in the volume's Desktop database, as 
specified by its FileCreator and Iconlndex. 

For each FileCreator, the Desktop database contains a list of icons. Information about 
each icon can be obtained by making successive FPGetlconlnfo calls with lconlndex 
varying from 1 to the total number of icons stored in the Desktop database for that 
FileCreator. If Iconlndex is greater than the number of icons in the Desktop database for 
the specified FileCreator, an ltemNotFound result code is returned. 

The user must have previously called FPOpenDT for the corresponding volume. 

(continued) • 

FPGetlconlnfo 13·93 



Block format Request Reply 

~I byte (8 bits) -----j ~I byte (8 bits) -----j 

Getlconlnfo function 
1- -

0 
1- Icon Tag -

~ DTRefNum - r -

1- - 1- -

~ FileCreator - 1- File Type -

~ - 1- -

Icon Type 

1- Iconlndex -
0 

- Size -

13-94 FPGetlconlnfo 



FPGetSrvrlnfo 

Inputs 

Outputs 

Result codes 

Algorithm 

This request obtains a block of descriptive information from the server, without requiring 
a session to be opened. Text in boldface applies to AFP Version 2.0 only. 

SAddr (EntityAddr) 

FPError (long) 

Flags (int) 

Server Name (string) 

Machine Type (string) 

AFP Versions (strings) 

UAMs (strings) 

Volume Icon and Mask 
(256 bytes) 

NoServer 

internet address of the server 

flags, consisting of: 

0 SupportsCopyFile set if server supports the 
FPCopyFile call 

1 SupportsChgPwd set if server supports the 
FPChangePassword call 

the name of the server 

string describing the server's hardware and/or operating 
system 

versions of AFP that the server uses 

user authentication methods supported by the server 

Server is not responding. 

The FPGetSrvrlnfo call retrieves information about the server in the form of an 
information block. 

To facilitate access to all the fields of the information block, the block begins with a 
header containing the offset to each field of information: first an offset to the Machine 
Type, followed by the offset to the AFP Versions strings, the offset to the UAM strings, 
and the offset to the Volume Icon and Mask. These offsets are measured relative to the 
start of the information block. The Volume Icon and Mask field is optional; if it is not 
included, the offset to the Volume Icon and Mask will be 0. 

The AFP versions and the UAMs are formatted as a 1-byte count followed by that 
number of strings packed back-to-back without padding. 

(continued) • 

FPGetSrvrlnfo 13-95 



Notes This is the only AFP call that can be made without first setting up a session between the 
workstation and server. 

The server can pack fields in the reply block in any order, and each field should be accessible 
only through the use of offsets. In other words, the workstation client should make no 
assumptions aQ<>ut how the fields are packed relative to one another. The exception is the 
Server Name field, which always begins illlJllediately after the Flags field 

This call should be implemented using the ASP GetStatus mechanism. 

13-96 FPGetSrvrlnfo 



Block format Request 

I ' byte (8 bits)~ 

GetSrvrlnfo function 

Flap 

SupportsChsJ'Wd -----------' 
SupportsCopyFile -------- -' 

r-

r-

r-

1-

1-

• • • 

• • • 

• • • 

• • • 

• • • 

Reply 

Offset to 
Machine Type 

Offset to count of 
AFP Versions 

Offset to count 
ofUAMs 

Offset to 
Volume Icon and Mask 

Flags 

Server Name 

Machine Type 

Count of AFP Versions 

AFP Versions 

Count of UAMs 

UAMs 

Volume Icon and Mask 
(optional) 

-

-

-

-

-

• • • 

• • • 

• • • 

• • • 
I 
• • • 



FPGetSrvrParms 

Inputs 

Outputs 

Result codes 

Algorithm 

This request retrieves server parameters. Text in boldface applies to AFP Version 2.0 
only. 

SRefNum (inl) 

FPError (long) 

Server Time (long) 

Num Vols (byte) 

NumVols structures 
containing a 1-byte 
header and volume 
name in the form: 

ParamErr 

session refnum 

current date-time on the server's clock 

number of volumes managed by the server 

HasPassword (bit) flag indicating whether or not 
this volume is password
protected: 

HasCmifiglnfo (bit) 

Vo/Name (string) 

0 = not protected 

1 = has password 

flag indicating whether or not 
this volume contains Apple II 
configuration information 

character string name of volume 

Session refnum is unknown. 

The VolNames strings and HasPassword (and HasConfiglnfo) flag are packed together 
without padding in the reply block. In AFP 2.0, the HasConfiglnfo flag will be set 
for one of the volumes to indicate whlch volume contains Apple II 
configuration information. 

13-98 FPGetSrvrParms 



Block format Request 

GetSmParms function 

Has Password 

-

-

-

-

• • • 

l 

Reply 

Server Time 

NumVols 

VoiNamc 

-

-

-

1 
• • • 

- HasConfiglnli; 
Repeated 
for each 
volume 

FPGetSrvrParms 13·99 



FPGetUserlnfo 

Inputs 

Outputs 

Result codes 

Algorithm 

Notes 

This request is used to retrieve information about a user. It is new in AFP Version 2.0. 

SRefNum (int) 

1hisUser (bit) 

User ID (long) 

Bitmap (int) 

FPError (long) 
Bitmap (int) 

User Info parameters 
requested 

ParamErr 
ItemNotFound 

BitmapErr 

AccessDenied 

CallNotSupported 

session refnum 

flag indicating whether infonnation is to be returned for the 
user who is the client of the session (if set, the User ID field 
is ignored) 

ID of user for whom infonnation is to be retrieved (not valid 
if ThisUser bit is set) 

bitmap describing which parameters are to be retrieved (the 
bit corresponding to each desired parameter should be set): 

0 User ID Oong) 
1 Primary Group ID (long) 

copy of input parameter 

ThisUser bit is not set (it must be set in AFP Version 2.0). 

User ID is unknown. 

An attempt was made to retrieve a parameter that cannot be 
obtained with this call. 

User not authorized to retrieve user infonnation for this user. 

Workstation is using AFP Version 1.1. 

The server retrieves the specified parameters for the specified user and packs them, in 
bitmap order, in the reply packet. 

This call can be used only to retrieve the User ID and Primary Group ID of the user who is 
the client of this session, thus requiring that the ThisUser bit be set. The User ID 
parameter is intended for future expansion. 

13-100 FPGetUserlnfo 



Block format Request 

~~ Bytc(8bi15)~ 

GetUscrlnfo fundion 

I 1-

t- -

t- User ID -

1- -

r- Bitmap -

Reply 

~I Byte(S bits)~ 

Tit is User 
-

• • • 
I 

Bitmap 

L"scr Info parameters 

Bitmap 

Primary Group ID -------' 

User ID --------_J 

-

• • • 
I 

FPGetUserlnfo 13-101 



FPGetVolParms 

Inputs 

Outputs 

Result codes 

Algorithm 

This request retrieves parameters for a particular volume. 

SRefNum (int) 

Volume ID (int) 

Bitmap (int) 

FPEn-or (long) 

Bitmap (int) 

Volume parameters 
requested 

ParamErr 

BitmapErr 

session refnum 

volume identifier 

bitmap describing which parameters are to be returned (the 
bit corresponding to each desired parameter should be set); 
cannot be null: 

0 Attributes (int), consisting of the following flag: 

0 ReadOnly 

1 Signature (int) 

2 Creation Date (long) 

3 Modification Date (long) 

4 Backup Date (long) 

5 Volume ID (int) 

6 Bytes Free (long) unsigned 

7 Bytes Total (long) unsigned 

8 Volume Name (int) 

copy of input parameter 

Session refnum or volume identifier is unknown. 

An attempt was made to retrieve a parameter that cannot be 
obtained with this call; bitmap is null. 

The FPGetVolParms call retrieves parameters that describe a specified volume. The volume 
is specified by its Volume ID as returned from the FPOpenVol call. In response to this call , 
the server packs the volume parameters in bitmap order in the reply block, along with a 
copy of the Bitmap inserted before the parameters. 

13·102 FPGetVolParms 



Notes 

Block format 

Request 

The server needs to keep all variable-length parameters, such as the Volume Name field, at 
the end of the block. In order to do this, the server represents variable-length parameters 
in bitmap order as fixed-length offsets (integers). These offsets are measured from che 
start of the parameters (not from the start of the Bitmap) to the start of the variable
length fields. The variable-length fields are then packed after all fixed-length fields. 

The user must have previously called FPOpenVol for this volume. 

The ReadOnly attribute must be set by some administrative function. 

Reply Bitmap 

I ' O)~C (8 bits) -j I ' b)1C (8 biL~) -j 
Ge1Voll'arrns fundion 

0 

f- Volumc iD 

f- Bilmap 

-

-

• • • 

Bilmap -

Volume parJmelcrs 

Volume Attributes 

• • • 

B~cs TOtal 

B~1es Free 

Volume lD ----' 

Backup Dale ----' 

Mod Dale ----~ 

Cre-JIC Dale ---------' 

SignaiUre -------' 

AllribUies -----------' 

FPGetVolParms 13-103 



FPLogin 

Inputs 

Outputs 

Result codes 

Algorithm 

13-104 FPLogin 

This request establishes an AFP session with a server. 

SAddr (EntityAddr) 

AFP Version (string) 

UAM (string) 

User Auth Info 

FPE11'0r (long) 

SRefNum (int) 

ID Number (int) 

User Auth Info 

NoSe rver 

BadVersNum 

BadUAM 

ParamErr 

UserNotAuth 

AuthContinue 

ServerGoingDown 

MiscErr 

internet address of the file server 

a string indicating which AFP version to use 

a string indicating which user authentication method to use 

information required to authenticate the user; dependent on 
the UAM used (can be null) 

session refnum used to refer to this session in all subsequent 
calls (valid if no error or AuthContinue result code is returned) 

an ID to be used for certain UAMs by the FPLoginCont call 
(valid only if AuthContinue result code is returned) 

a buffer returned for certain UAMs (valid only if 
AuthContinue result code is returned) 

Server is not responding. 

Server cannot use the specified AFP version. 

UAM is unknown. 

User is unknown. 

UAM failed. 

Authentication not yet complete. 

Server is shutting down. 

User is already authenticated. 

The workstation sends the server an AFP Version string, which indicates the AFP version 
to use, and a UAM string, which indicates the user authentication method to use. These 
strings are packed into the request block with no padding. User Auth Info, if used, 
follows the UAM string without padding. 

If the server cannot use the requested AFP Version, a BadVersNum result code will be 
returned. Otherwise, that version will be used for the duration of the session. 



Notes 

Block format 

In the 'Cleartxt Passwrd' UAM, the user's name and password are sent in the 
User Auth Info field. The password is transmitted in cleartext and must be padded 
(suffixed) with null bytes if necessary to make its length 8 bytes. If necessary, a null byte 
will be inserted after the user name to make the password begin on an even boundary. 
The server looks up the password for that user and compares it to the password in the 
request block. If the two passwords match, then the user has been authenticated and the 
login succeeds. If they do not match, a UserNotAuth result code is returned. 

In the 'Randnurn Exchange' UAM, only the user name is sent in the User Auth 
Info field. If the user name is valid, the server generates an 8-byte random number and 
sends it back to the workstation, along with an ID number and an AuthContinue result 
code. The AuthContinue indicates that all is well at this point and· that the user is not yet 
authenticated. 

The workstation then uses the password as a key to encrypt the random number and 
sends the result back to the server in the User Auth Info field of an FPLoginCont request, 
along with the ID Number returned from the FPLogin request. The server uses this ID 
Number to associate the two calls, FPLogin and FPLoginCont. The server looks up the 
password for that user and uses it as a key to encrypt the same random number. If the 
two encrypted numbers match, then the user has been authenticated and the login 
succeeds. Otherwise, the server returns a UserNotAuth result code. 

If any error result code (other than AuthContinue) is returned, the session is not opened. 

User name comparison is case-insensitive and diacritical-sensitive; password comparison is 
case-sensitive. 

Random-number encryption is performed using DES. 

Request 

~lbyte(Sbits)~ 

• • • 

Login function 

AFP Version • • • 

I 
• • 
• UAM • • • 

l-----------------------1 • • • 
User Auth Info 

(optional) 
• • • 

Reply 

~1 byte (8 bits)~ 

t
------------------ ---~ 

ID Number (used 
only in some UAMs) 

----------------------• • • 
User Auth Info (used 
only in some lJA.Ms) 

• • • 

FPLogin 13-lOS 



FPLoginCont 

Inputs 

Outputs 

Result codes 

Algorithm 

This request continues the login and user authentication process started by the FPLogin 
call. 

SRejNum (int) 

ID Number (int) 

User Auth Info 

FPError (long) 

ID Number (int) 

User Auth Info 

NoServer 

UserNotAuth 

AuthContinue 

session refnum 

number returned from the previous FPLogin or FPLoginCont 
call 
information required to authenticate the user, depending on 
the UAM 

an ID returned for certain UAMs; used by the subsequenr 
FPLoginCont call (valid only if AuthContinue result code is 
returned) 

a buffer returned for certain UAMs (valid only if 
AuthContinue result code is returned) 

Server is not responding. 

UAM failed. 

User authentication not yet complete. 

The FPLoginCont call sends the ID Number and User Auth Info parameters to the server, 
which uses them to execute the next step in the UAM. If an additional exchange of 
packets is required, the server returns an AuthContinue result code. Otherwise, it returns 
either no error, meaning the user has been authenticated, or UserNotAurh, meaning the 
authentication method has failed. If the server returns no error, the SRefNum is validated 
for use in subsequent calls. If the server returns UserNotAuth, it also closes the session 
and invalidates the SRefNum. 

13-106 FPLoginCont 



Block format Request 

~I byte (8 bits) -----j 

f-

• • • 

LoginCont function 

0 

ID number 

User Auth Info 

-

• • • 

Reply 

~1 byte (8 bits) -----j 

t
-------------------- -~ 

ID Number (used 
only in some UAMs) 

----------------------
• • • 

User Auth Info (used 
only in some UAMs) 

• • • 

FPLoginCont 13-107 



FPLogout 

Inputs 

Outputs 

Result codes 

Algorithm 

Block format 

13-108 FPLogout 

This request terminates a session with a server. 

SRe.fNum (int) 

FPError (long) 

ParamErr 

session refnum 

Session refnum is unknown. 

The server flushes and closes any forks opened by this session, frees all session-related 
resources, and invalidates the session refnum. 

Request 

~~ byte (8 bits)~ 

I Logout function I 



FPMapiD 

Inputs 

Outputs 

Result codes 

Algorithm 

Notes 

Block format 

This request maps a user ID to a user name, or a group ID to a group name. 

SRejNum (int) 

Subfunclion (byte) 

ID (long) 

FPError (long) 

Name (string) 

ParamErr 

ItemNotFound 

session refnum 

subfunction code: 

1 = map user ID to user name 

2 = map group ID to group name 

item to be mapped, either user ID or group ID 

name corresponding to ID 

Session refnum or subfunction code is unknown; no ID was 
passed in the request block. 
ID was not recognized 

TI1e server retrieves a user or group name corresponding to the specified user ID or 
group ID. An ItemNotFound result code is returned if the ID does not exist in the 
server's list of valid user or group IDs. 

A user ID or group ID of 0 maps to a null string. 

Request 

MapiD funt1ion 

Subfunction 

r- -

f- ID -

f- -

Reply 

I' b)le (8 bits)~ 

• • • 
Name • • • 

FPMapiD 13-109 



FPMapName 

Inputs 

Outputs 

Result codes 

Algorithm 

Notes 

Block format 

This request maps a user name to a user ID, or a group name to a group ID. 

SRefNum (int) 

Subfunclion (byte) 

Name (string) 

FPError (long) 

ID (long) 

ParamErr 

ItemNotFound 

session refnum 

subfunction code: 

3 = map user name to user ID 
4 = map group name to group ID 

item to be mapped, either user name or group name 

ID corresponding to input name 

Session refnum or function code is unknown. 

Name is not recognized. 

The server retrieves an ID number corresponding to a user or group name or returns an 
ItemNotFound result code if it does not find the name in its list of valid names. 

A null user or group name maps to an ID of 0. 

Request 

~I byte (8 bi15)-j 

• • • 

MapNamc function 

Subfunction 

~arne 
• • • 

Reply 

~I byte (8 bits) -j 

- -

- 10 -

- -

13-110 FPMapName 



FPMoveAndRename 

Inputs 

Outputs 

This request moves a directory or file to another location on the same volume. It can also 
be used to rename the directory or file. Text in boldface applies to AFP Version 2.0 
only. 

SRefNum (int) 

Volume ID (int) 

session refnum 

volume identifier 

Source Directory ID (long) source ancestor directory identifier 

Source Path Type (byte) indicates whether Source Pathname is composed of long 
names or short names: 

Source Pathname (string) 

Dest Directory ID (long) 

Dest Path Type (byte) 

Dest Pathname (string) 

NewType (byte) 

NewName (string) 

FPError (long) 

1 = short names 

2 = long names 

pathname of file or directory to be moved (may be null if a 
directory is to be moved) 

destination ancestor directory identifier 

indicates whether Dest Pathname is composed of long names 
or short names (same values as Source PathType) 

pathname to the destination parent directory (may be null) 

indicates whether NewName is a long name or a short name 
(same values as Source PathType) 

new name of file or directory (may be null) 

(continued) • 

FPMoveAndRename 13·111 



Result codes 

Algorithm 

Rights 

Notes 

ParamErr 

ObjectNotFound 

ObjectExists 

CantMove 

AccessDenied 

ObjectLocked 

VolLocked 

Session refnum, volume identifier, or pathname type is 
unknown; pathname or NewName is bad. 

Input parameters do not point to an existing ftle or directory. 

A ftle or directory with the name NewName already exists. 

An attempt was made to move a directory into one of its 
descendent directories. 
User does not have the rights listed below; in AFP 1.1, the 
volume is ReadOnly; in AFP 1.1, the directory being moved 
(and/or renamed) is marked Renameinhibit; in AFP 1.1, the ftle 
being moved and renamed is marked Renamelnhibit. 
In AFP 2.0, the directory being moved (and/or 
renamed) is marked Renamelnhibit; in AFP 2.0, the me 
being moved and renamed is marked Renamelnhibit. 
In AFP 2.0, the volume is ReadOnly. 

This call does not just copy the CNode; it deletes it from the original parent directory. If 
the NewName parameter is null, the moved CNode retains its original name. Otherwise, 
the server moves the CNode, creating the long or short names as described in the "Catalog 
Node Names" earlier in this chapter. The CNode's modification date and the modification 
date of the source and destination parent directories are set to the server's clock. The 
CNode's Parent ID is set to the destination Parent ID. All other parameters remain 
unchanged, and if the CNode is a directory, the parameters of all descendent directories 
and ftles remain unchanged. 

The FPMoveAndRename call indicates the destination of the move by specifying the 
ancestor Directory ID and pathname to the CNode's destination parent directory. 

If the CNode being moved is a directory, all its descendents are moved as well. 

To move a directory, the user must have search access to all ancestors, down to and 
including the source and destination parent directories, as well as write access to those 
directories. To move a ftle, the user must have search access to all ancestors, except the 
source and destination parent, as well as read and write access to the source parent 
directory and write access to the destination parent directory. 

The user must have previously called FPOpenVol for this volume. 

A CNode cannot be moved from one volume to another with this call, even if both 
volumes are managed by the same server. 

13-112 FPMoveAndRename 



Block format 

~1 byte(Sbits)~ 

MoveAndRename function 

0 

-- VolumeiD -

~ -

- Source Directory ID -

- -

- -

- Dest Directory ID -

- -

Source PathType 

• • • Source Pathname • • • 

Dest PathType 

• • • Dest Pathname • • • 

I NewType I 
• • • New Name • • • 

. ~ 

FPMoveAndRename 13-113 



FPOpenDir 

Inputs 

Outputs 

Result codes 

Algorithm 

Rights 

Notes 

13-114 FPOpenDir 

This request opens a directory on a variable Directory ID volume and returns its 
Directory ID. 

SRefNum (int) 

Volume ID (int) 

Directory 1D (long) 

PalhType (byte) 

Pathname (string) 

FPError (long) 

Directory ID (long) 

ParamErr 

ObjectNotFound 

AccessDenied 

ObjectTypeErr 

session refnum 

volume identifier 

ancestor directory identifier 

indicates whether Pathname is composed of long names or 
short names: 

1 = short names 

2 = long names 

pathname to desired directory (cannot be null) 

identifier of specified directory 

Session refnum, volume identifier, or pathname type is 
unknown; pathname is bad. 

Input parameters do not point to an existing directory. 

User does not have the rights listed below. 

Input parameters point to a file. 

If the Volume ID parameter specifies a variable Directory ID volume, the server generates 
a Directory ID for the specified directory. If the Volume ID parameter specifies a fixed 
Directory ID type, the server returns the fixed Directory ID belonging to this directory. 

Although this call can obtain a Directory ID for a directory on a fixed Directory ID 
volume, it is not the recommended way to obtain the parameter; use the 
FPGetFileDirParms or FPEnumerate call instead. 

The user must have search access to all ancestors down to and including this directory's 
parent directory. 

The user must have previously called FPOpenVol for this volume. 



Block format Request 

~1 b}te (8 bits)~ 

1--

-
i-

i-

• • • 

OpenDir function 

0 

Volume ID 

Directory JD 

Path Type 

Pathname 

-

-

-

-

• • • 

Reply 

~I byte (8 bits)~ 

1-- -

1-- Directory ID -

~ -

FPOpenDir 13-115 



FPOpenDT 

Inputs 

Outputs 

Result codes 

Algorithm 

Block format 

13-116 FPOpenDT 

This request opens the Desktop database on a particular volume. 

Volume ID (int) 

FPError (long) 

DTRejNum (int) 

ParamErr 

volume identifier 

Desktop database refnum 

Session refnum or volume identifier is unknown. 

The server opens the Desktop database on the selected volume and returns a Desktop 
database refnum, which is unique among such refnums. The DTRetNum is to be used in 
all subsequem Desktop database calls relating to this volume. 

Request Reply 

~-1 byte (8 biL~) -----+-j 

OpenDT function 

DTRefNum -

0 

r- Volume ID -



FPOpenFork 

Inputs 

Outputs 

This request opens the data or resource fork of an existing ftle to read from it or write to 
it. Text in boldface applies to AFP Version 2.0 only. 

SRefNum (int) 

Volume ID (int) 

Directory ID (long) 

Bitmap (int) 

AccessMode (int) 

PathType (byte) 

Pathname (string) 

RsrdDataFlag (bit) 

FPError (long) 

Bitmap (int) 

OForkRefNum (int) 

File parameters requested 

session refnum 

volume identifier 

ancestor directory identifier 

bitmap describing which parameters are to be returned (the 
bit corresponding to each desired parameter should be set); 
this field is the same as File Bitmap in the FPGetFileDirParms 
call and can be null 

desired access and deny modes, specified by any combination 
of the following bits: 

0 Read allows the fork to be read 

1 

4 
\Vrite 

DenyRead 

allows the fork to be wrinen to 

denies others the right to read the fork 
while this user has it open 

5 DenyWrite denies others the right to write to the fork 
while this user has it open 

(See "File Sharing Modes" earlier in this chapter for an 
explanation of deny modes.) 

indicates whether Pathname is composed of long names or 
short names: 

1 = short names 

2 = long names 
pathname to desired file; cannot be null 

flag indicating which fork is to be opened: 

0 =data fork 

1 = resource fork 

copy of input parameter 

refnum used to refer to this fork in subsequent calls 

(continued) • 

FPOpenFork 13·117 



Result codes 

Algorithm 

ParamErr 

ObjectNotFound 

BitmapErr 

DenyConflict 

AccessDenied 

ObjectLocked 

Vollocked 

ObjectTjpeErr 

TooManyFilesOpen 

Session refnum, volume identifier, or pathname type is 
unknown; pathname is null or bad. 

Input parameters do not point to an existing ftle. 

An attempt was made to retrieve a parameter that cannot be 
obtained with this call (fork will not be opened). 

Fork cannot be opened because deny modes conflict 
(however, the file's parameters will be returned). 

User does not have the rights listed below; in AFP 1.1, the ftle 
is marked Writelnhibit and the user attempted to open it for 
write; in AFP 1.1, the volume is ReadOnly and the user 
attempted to open the file for write. 
In AFP 2.0, the file is marked Writelnhibit and the user 
attempted to open it for write. 
In AFP 2.0, the volume is ReadOnly and the user 
attempted to open the file for write. 

Input parameters point to a directory. 

The server cannot open another fork. 

The server opens the specified fork if the user has the access rights for the requested 
access mode and if the access mode does not conflict with already-open access paths to 
this fork. 

If the call opens the fork, the server packs the specified parameters, in bitmap order, in the 
reply block, preceded by Bitmap and OForkRefNum. This OForkRefNum is used in all 
subsequent calls involving the open fork. 

File parameters are returned only if the call is completed with no error or with a 
DenyConflict result code. In the latter case, the server returns 0 for the OForkRefNum and 
also returns the requested parameters so that the user can determine whether he or she is 
the one who has the fork open. 

A BitmapErr result code is returned if an attempt is made to retrieve the length of the 
ftle's other fork. 

13-118 FPOpenFork 



Rights 

Notes 

The server needs to keep variable-length parameters, such as Long Name and Short Name, 
at the end of the reply block. In order to do this, the server represents variable-length 
parameters in bitmap order as fixed-length offsets (integers). Each offset is measured 
from the start of the parameters (not from the start of the Bitmap) to the start of the 
variable-length fields. The actual variable-length fields are then packed after all fiXed
length fields. 

If the fork is opened and the user has requested the file's attributes in the Bitmap, the 
appropriate DAlreadyOpen or RAlreadyOpen bit is set. 

To open a fork for read or none (when neither read nor write access is requested) access, 
the user must have search access to all ancestors, except the parent directory, as well as 
read access to the parent directory. For details about access modes, see "File Sharing 
Modes" earlier in this chapter. 

To open the fork for write, the volume must not be designated for read-only access. If 
both forks are currently empty, the user must have search or write access to all ancestors, 
except the parent directory, as well as write access to the parent directory. If either fork is 
not empty and one of them is being opened for write, the user must have search access to 
all ancestors, except the parent directory, as well as read and write access to the parent 
directory. 

The user must have previously called FPOpenVol for this volume. Each fork must be 
opened separately; a unique OForkRefNum is returned for each. 

(continued) • 

FPOpenFork 13-119 



Block format 

Rsrc/Datal'lag 

13·120 FPOpenFork 

Request 

~lh)1C (8bits)~ 

- rl 
-

r-

r-

r-

-

-

• • • 

OpcnFork function 

Volume lD 

Directory lD 

Bitmap 

Access,\ lode 

P:uhType 

Pathnamc 

-

-

-

-

-

-

• • • 

Reply 

~l b)1e (8bits)~ 

-

-

• • • 

Write 

Read 

Bitmap 

OForkRefNum 

File parJmeter.; 

Accessl'ttodc 

-

-

• • • 



FPOpenVol 

Inputs 

Outputs 

Result codes 

Algorithm 

This call makes a volume available to the workstation. 

SRejNum (int) 

Bitmap (int) 

Volume Name (string) 

Password (8 bytes) 

FPError (long) 

Bitmap (int) 

Volume parameters 
requested 

ParamErr 

BitmapErr 

AccessDenied 

session refnum 

bitmap describing which parameters are to be returned (the 
bit corresponding to each desired parameter should be set); 
this field is the same as that in the FPGetVolParms call and 
cannot be null 

name of the volume as returned by the FPGetSrvrParms call 

optional password 

copy of input parameter 

Session refnum or volume name is unknown. 

An attempt was made to retrieve a parameter that cannot be 
obtained with this call; bitmap is null. 

Password is not supplied or does not match. 

The FPOpenVol call indicates that the user of a workstation wants to work with a 
volume. This call must be submitted before any other call can be made to obtain access to 
the CNodes on the volume. 

If a password is required to gain access to the volume, it is sent as the Password 
parameter in cleartext, padded (suffixed) with null bytes to its full 8-byte length. 
Password comparison is case-sensitive. The server checks that the password supplied by 
the user matches the one kept with the volume. If they do not match, or if no Password 
parameter was supplied, an AccessDenied result code is returned. 

If the passwords match, or if the volume is not password-protected, the server retrieves 
the requested parameters and packs them into the reply block. The user now has 
permission to make calls relating to files and directories on the volume. 

(continued) • 

FPOpenVol 13-121 



Notes 

Block format 

13·122 FPOpenVol 

The FPOpen Vol call cannot be made with a null Bitmap parameter. The Bitmap must 
request that the Volume ID be returned. This parameter cannot be retrieved any other 
way, and it is needed for most subsequent calls. 

FPOpenVol can be called multiple times without an intervening FPCloseVol call; however, a 
single FPCioseVol call invalidates the Volume ID. 

A null byte 
will be added 
if necessary to 

make password 
begin on an even 

boundary. 

Request 

~1 byte(8bits)~ 

1-

• • • 

OpenVol function 

0 

Bitmap 

Volume Name 

-

• • • 

-----;---f-----------~-----------

Password 
(optional) 

Reply 

~lbyte(8bits)~ 

• • • 

Bitmap -

Volume parameters • • • 



FPRead 

Inputs 

Outputs 

Result codes 

Algorithm 

This request reads a block of data from an open fork. Text in boldface applies to AFP 
Version 2.0 only. 

SRejNum (int) 

OForkRejNum (int) 

Offset (long) 

ReqCount (long) 

Newline Mask (byte) 

Newline Char (byte) 

FPError (long) 

ActCount (long) 

Fork data requested 

ParamErr 

AccessDenied 

EOFErr 

LockErr 

session refnum 

open fork refnum 

number of the first byte to be read 

number of bytes to be read 

mask used to determined where the read should be 
terminated 

character used to determine where the read should be 
terminated 

number of bytes actually read from the fork 

Session refnum or open fork refnum is unknown; ReqCount 
or Offset is negative; Newline Mask is invalid. 

Fork was not opened for read access. 

End of fork was reached. 

Some or all of the requested range is locked by another user. 

The FPRead request retrieves a range of bytes from a specified fork. The server begins 
reading at the byte number specified by the Offset parameter. The server terminates the 
read for one of the following reasons (whichever comes first): 

• It encounters the character specified by the combination of Newline Char 
and Newline Mask. 

• It reaches the end of fork. 

• It encounters the start of a range locked by another user. 

• It finishes reading the number of bytes specified by the ReqCount 
parameter. 

(continued) • 

FPRead 13-123 



Rights 

Notes 

13·124 FPRead 

If the server reaches the end of fork or the start of a locked range, it returns all data read 
up to that point along with an EOFErr or LockErr result code. 

Newline Mask is a byte mask that is to be logically ANDed with a copy of each byte read. 
If the result matches the Newline Char, the read tenninates. In AFP 1.1, the only legal 
values of Newline Mask are $00 and $FF. In AFP 2.0, an values of NewBne Mask are 
allowed. Using a Newline Mask of $00 essentially disables the Newline check feature. 

If the user reads a byte that was never written to the fork, the result is undefmed. 

The fork must be open for read by the user issuing this request. 

Lock the range before submitting this call. The underlying transport mechanism may 
force the request to be broken into multiple smaller requests. If the range is not locked 
when this call begins execution, it is possible for another user to lock some or all of the 
range before this call completes, causing the read to succeed partially. 

The ActCount parameter is returned by the underlying transport mechanism and not as a 
parameter in the reply block. 



Block format Request 

~1 byte (8 bits) -j 
Read function 

0 

1- OForkRefNum -

I- -

1- Offset -

I- -

1- -

I- ReqCount -

1- -

Newline Mask 

Newline Char 

Reply 

~1 byte (8 bits) -j 
I I 
• • • 
I 

Fork data • • • 
I 

FPRead 13-125 



FPRemoveAPPL 

Inputs 

Outputs 

Result codes 

Algorithm 

Rights 

Notes 

This request removes an APPL mapping from the volume's Desktop database. 

SRefNum (int) 

DTRefNum (int) 

Directory ID (long) 

FileCreator (ResType) 

PathType (byte) 

Pathname (string) 

FPError (long) 

ParamErr 

ObjectNotFound 

AccessDenied 

1/emNotFound 

session refnum 

Desktop database refnum 

ancestor directory identifier 

file creator of application corresponding to the APPL mapping 

indicates whether Pathname is composed of long names or 
short names: 

1 = short names 

2 = long names 

pathname to the application corresponding to the APPL 
mapping being removed 

Session refnum or Desktop database refnum is unknown. 

Input parameters do not point to an existing file. 

User does not have the rights listed below. 

No APPL mapping corresponding to the input parameters 
was found in the Desktop database. 

The server locates in the Desktop database the APPL mapping corresponding to the 
specified application and FileCreator. If an APPL mapping is found, it is removed. 

The user must have search access to all ancestors, except the parent directory, as well as 
read and write access to the parent directory. 

The user must have previously called FPOpenDT for the corresponding volume. In 
addition, the file must exist in the specified directory before this call is issued. 

13-126 FPRemoveAPPL 



Block format Reply 

~~ byte (8 bits) -------j 

-

-

-

-

-

-

-

• • • 

RemoveAPPL function 

0 

DTRefNum 

Directory ID 

FileCreator 

Path Type 

Pathname 

-

-

-

-

-

-

-

• • • 

FPRemoveAPPL 13-127 



FPRemoveComment 

Inputs 

Outputs 

Result codes 

Algorithm 

Rights 

Notes 

This request removes a comment from the volume's Desktop dacabase. 

SRejNum (int) 

DTRejNum (int) 

Directory ID (long) 

PathType (byte) 

Pathname (string) 

FPError (long) 

ParamErr 

ltemNotFound 

AccessDenied 

ObjectNotFound 

session refnum 

Desktop database refnum 

ancestor directory identifier 

indicates whether Pathname is composed of long names or 
short names: 

1 = short names 

2 = long names 

the pathname to the file or folder associated with the 
comment 

Session refnum, Desktop database refnum, or pathname type 
is unknown; pathname is bad. 

No comment was found in Desktop dacabase. 

User does not have the rights listed below. 

Input parameters do not point to an existing file or directory. 

The server removes the comment associated with the specified file or folder from the 
Desktop dacabase. 

If the comment is associated with a directory that is not empty, the user must have 
search access to all ancestors, including the parent directory, plus write access to the 
parent directory. If the comment is associated with an empty directory, the user must 
have search or write access to all ancestors, including the parent directory, plus write 
access to the parent directory. 

If the comment is associated with a file that is not empty, the user must have search 
access to all ancestors, except the parent directory, plus read and write access to the 
parent directory. If the comment is associated with an empty ftle, the user must have 
search or write access to all ancestors, except the parent directory, plus write access to the 
parent directory. 

The user must have previously called FPOpenDT for the corresponding volume. 

13-128 FPRemoveComment 



Block format Request 

~1 byte (8 bits)~ 

I-

~ 

f-

f-

• • • 

RemoveComment function 

0 

DTRefNum 

Directory ID 

Path Type 

Pathname 

-

-

-

-

• • • 

FPRemoveComment 13-129 



FPRename 

Inputs 

Outputs 

Result codes 

Algorithm 

13-130 FPRename 

This request renames a directory or file. Text in boldface applies to AFP Version 2.0 
only. 

SRefNum (int) 

Volume ID (int) 

Directoty ID (long) 

PathType (byte) 

Pathname (string) 

NewType (byte) 

NewName (string) 

FPError (long) 

ParamErr 

ObjectNotFound 

ObjectE.xists 

AccessDenied 

VolLocked 

ObjectLocked 

CantRename 

session refnum 

volume identifier 

ancestor directory identifier 

indicates whether Pathname is composed of long names or 
short names: 

1 = short names 

2 = long names 

pathname to file or directory to be renamed; can be null if a 
directory is being renamed 

indicates whether NewName is a long name or short name 
(same values as PathType) 

new name of file or directory (cannot be null) 

Session refnum, volume identifier, or pathname type is 
unknown; pathname or NewName is bad. 

Input parameters do not point to an existing file or directory. 

A file or directory with the name NewName already exists. 

User does not have the rights listed below; in AFP 1.1, the 
volume is ReadOnly; in AFP 1.1, the file or directory is marked 
Renamelnhibit. 

In AFP 2.0, the volume is ReadOnly. 
In AFP 2.0, the file or directory is marked 
Renamelnhibit. 
An attempt was made to rename a volume or root directory. 

The server assigns a new name to the file or directory. The other name (long or short) is 
generated as described in "Catalog Node Names" earlier in this chapter. The modification 
date of the parent directory is set to the server's clock. 



Rights 

Notes 

Block format 

To rename a directory, the user must have search access to all ancestors, including the 
CNode's parent directory, as well as write access to the parent directory. To rename a file, 
the user must have search access to all ancestors, except the CNode's parent directory, as 
well as read and write access to the parent directory. 

The user must have previously called FPOpenVol for this volume. 

Request 

~1 byte (8 bits) -----j 
Rename function 

0 

f- Volume 10 -

.__ -

- Directory 10 -

- -

Path Type 

• • • Pathname • • • 

New Type I 
• • • New Name • • • 

FPRename 13-131 



FPSetDirParms 

This request sets parameters for a specified directory. Text in boldface applies to AFP 
Version 2.0 only. 

Inputs 

Outputs 

Result codes 

SRefNum (int) 

Volume ID (inl) 

Directory ID (long) 

Bitmap (int) 

PathType (byte) 

Pathname (string) 

Directory parameters 
to be set 

FPError (long) 

ParamErr 

ObjectNotFound 

BilmapErr 

AccessDenied 

Vollocked 

ObjectTypeErr 

13-132 FPSetDirParms 

session refnum 

volume identifier 

ancestor directory identifier 

bitmap describing which parameters are to be set (the bit 
corresponding to each desired parameter should be set); this 
field is the same as Directory Bitmap in the 
FPGetFileDirParms call 

indicates whether Pathname is composed of long names or 
short names: 
1 = short names 

2 = long names 

pathname to desired directory 

Session refnum, volume identifier, or pathname type is 
unknown; pathname is bad; owner or group ID is not valid. 

Input parameters do not point to an existing directory. 

An attempt was made to set a parameter that cannot be set 
with this call; bitmap is null. 

User does not have the rights listed below; in AFP 1.1, the 
volume is ReadOnly. 

In AFP 2.0, the volume is ReadOnly. 
Input parameters point to a file. 



Algorithm 

Rights 

~otes 

The FPSetDirParms call sets parameters for a directory. The parameters must be packed, in 
bitmap order, in the request block. 

The workstation needs to keep variable-length parameters, such as Long Name and Short 
Name, at the end of the block. In order to do this, variable-length parameters are 
represented in bitmap order as flXed-length offsets {integers). These offsets are measured 
from the start of the parameters to the start of the variable-length fields. The actual 
variable-length fields are then packed after all flXed-length fields. 

A null byte must be added between the Pathname and the Directory Parameters if 
necessary to make the parameters begin on an even boundary in the request block. 

If this call sets the access controls, dates (except modification date), Finder Info, 
ProOOS Info, or changes any attributes, the modification date of the directory will be 
set to the server's clock. If this call sets the access controls, owner ID, group ID, or 
Invisible attribute, the modification date of the directory's parent directory will be set to 
the server's clock. 

Changing a directory's access rights immediately affects other currently open sessions. If 
the user does not have the access rights to set any ope of a number of parameters, an 
AccessDenied result code will be returned and no parameters will be set. 

To set a directory's access rights, owner ID, or group ID, or to change the 
Deletelnhibit, Reoamelnhibit, Writelnhibit, or Invisible attributes, the user must 
have search or write access to all ancestors, including this directory's parent directory, and 
the user must be the owner of the directory. To set any parameter other than the ones 
mentioned above for an empty directory, the user must have search or write access to all 
ancestors, except the parent directory, as well as write access to the parent directory. To 
set any parameter other than the ones mentioned above for a directory that is not empty, 
the user must have search access to all ancestors, including the parent directory, as well as 
write access to the parent directory~ 

The user must have previously called FPOpen Vol for this volume. 

This call cannot be used to set a directory's ~me {use FPRename), parent Directory ID 
(use FPMoveAndRename), Directory ID, or Offspring Count. 

(continued) • 

FPSetDirParms 13-133 



Block format 

A null byte will be 
added if necessary 

to make parameters 
begin on an even 

boundary. 

13·134 FPSetDirParms 

Request 

~I byte (8 bits) ----j 

~ 

1-

-

1-

I-

• • • 

SetDirPanns function 

0 

Volume lD 

Directory ID 

Bitmap 

Path Type 

Pathname 

-

-

-

-

-

• • • 

~f-----------~-----------1 ( ______________________ _ 

• • • 
Directory parameters • • • 



FPSetFileDirParms 

Inputs 

Outputs 

Result codes 

This request sets parameters for a file or directory. Text in boldface applies to AFP 
Version 2.0 only. 

SRefNum (int) 

Volume ID (int) 

Directory ID (long) 

Bitmap (int) 

PathType (byte) 

Pathname (string) 

Parameters to be set 

FPError (long) 

ParamErr 

ObjectNotFound 

AccessDenied 

Vollocked 

BitmapErr 

session refnum 

volume identifier 

ancestor directory identifier 

bitmap describing which parameters are to be set (the bit 
corresponding to each desired parameter should be set); this 
field is the same as File Bitmap or Directory Bitmap in the 
FPGetFileDirParms call (only the parameters that are common 
to both bitmaps may be set by this call) 

indicates whether Pathname is composed of long names or 
short names: 

1 = short names 

2 = long names 

pathname to desired file or directory 

Session refnum, volume identifier, or pathname type is 
unknown; pathname is bad. 

Input parameters do not point to an existing file or directory. 

User does not have the rights listed below; in AFP 1.1, the 
volume is ReadOnly. 

In AFP 2.0, the volume is ReadOnly. 

An attempt was made to set a parameter that cannot be set 
with this call; bitmap is null. 

(continued) • 

FPSetFileDirParms 13-135 



Algorithm 

Rights 

Notes 

The parameters that this call can set or clear are the Invisible and System attributes, 
Creation Date, Modification Date, Backup Date, Finder Info, and ProOOS Info. 

These parameters are common to both files and directories. The parameters must be 
packed, in bitmap order, in the request block. 

The workstation needs to keep variable-length parameters at the end of the block. In 
order to do this, variable-length parameters are represented in bitmap order as fixed-length 
offsets (integers). These offsets are measured from the start of the parameters to the 
start of the variable-length fields. The actual variable-length fields are then packed after all 
fixed-length fields. 

A null byte must be added between the Pathname and the Parameters if necessary to 
make the Parameters begin on an even boundary in the request block. 

If the Attributes field is included, the Set/Clear bit indicates that the specified attributes 
are to be either set or cleared (0 equals clear the specified attributes; 1 equals set the 
specified attributes). Therefore, it is not possible to set some attributes and clear others in 
the same call. 

If this call changes the CNodes's Invisible attribute, the modification date of the CNode's 
parent directory will be set to the server's clock. If this call changes the CNode's 
attributes or sets the CNode's dates (except modification date), Finder Info, or ProDOS 
Info, the modification date of the CNode will be set to the server's clock. 

To set the parameters for a directory that is not empty, the user needs search access to all 
ancestors, including the parent directory, as well as write access to the parent directory. 
To set the parameters for an empty directory, the user needs search or write access to all 
ancestors, except the parent directory, as well as write access to the parent directory. 

To set the parameters for a file that is not empty, the user needs search access to all 
ancestors, except the parent directory, as well as read and write access to the parent To 
set the parameters for an empty file, the user needs search or write access to all ancestors, 
except the parent directory, as well as write access to the parent. 

The user must have previously called FPOpen Vol for this volume. 

If it is known whether the CNode is a file or directory, the user can submit the 
FPSetFileParms or FPSetDirParms calls to set the Creation Date, Modification Date, 
Backup Date, and Finder Info parameters. To set a directory's Access Rights, Owner ID, or 
Group ID, use the FPSetDirParms call. To set a ftle's attributes other than Invisible and 
System, use the FPSetFileParms call. 

13-136 FPSetFileDirParms 



Block format 

A null byte will be 
added if necessary 

to make parameters 
begin on an even 

boundary. 

Request 

~~ hyte (8 bil'l) I 

~ 

~ 

~ 

~ 

~ 

• • • 

SetFileParms function 

0 

Volume ID 

Directory ID 

Bitmap 

Path Type 

Path name 

-

-

-

-

-

• • • 

~-----------~-----------1 
~---------------------• • • 

File parameters • • • 

FPSetFileDirParms 13-137 



FPSetFileParms 

This request sets parameters for a specified file. Text in boldface applies to AFP Version 
2.0 only. 

Inputs 

Outputs 

Result codes 

SRejNum (int) 

Volume ID (inl) 

Directory ID (long) 

Bitmap (int) 

Path Type (byte) 

Pathname (string) 

File parameters to be set 

FPError (long) 

ParamErr 

ObjectNotFound 

AccessDenied 

VolLocked 

BitmapErr 

ObjectTypeErr 

13-138 FPSetFileParms 

session refnum 

volume identifier 

ancestor directory identifier 

bitmap describing which parameters are to be set (the bit 
corresponding to each desired parameter should be set); this 
field is the same as File Bitmap in the FPGetFileDirParms call 

indicates whether Pathname is composed of long names or 
short names: 

1 = short names 

2 = long names 

pathname to desired file 

Session refnum, volume identifier, or pathname type is 
unknown; pathname is null or bad. 

Input parameters do not point to an existing file. 

User does not have the rights listed below; in AFP 1.1, the 
volume is ReadOnly. 

In AFP 2.0, the volume is ReadOnly. 

An attempt was made to set a parameter that cannot be set 
with this call; bitmap is null. 

Input parameters point to a directory. 



Algorithm 

Rights 

Notes 

The FPSetFilePanns call sets parameters for a fde. The parameters must be packed, in 
bitmap order, in the request block. 

The workstation needs to keep variable-length parameters at the end of the block. In 
order to do this, variable-length parameters are represented in bitmap order as fiXed-length 
offsets (integers). These offsets are measured from the start of the parameters to the 
start of the variable-length fields. The actual variable-length fields are then packed after all 
fixed-length fields. 

A null byte must be added between the Pathname and the File Parameters if necessary to 
make the parameters begin on an even boundary in the block. 

The following parameters may be set or cleared: the Attributes (all except DAlreadyOpen, 
RAlreadyOpen, and CopyProtect), the Creation Date, Modification Date, Backup Date, 
Finder Info, and ProOOS Info. 

If the Attributes parameter is included, the Set/Clear bit indicates that the specified 
attributes are to be either set or cleared (0 equals clear the specified attributes; 1 equals set 
the specified attributes). Therefore, it is not possible to set some attributes and clear 
others in the same call. 

If this call changes a file's Invisible attribute, the modification date of the file's parent 
directory will be set to the server's clock. If this call changes a file's Attributes or sets any 
dates (except modification date), Finder Info, or ProOOS Info, the modification date to 
the file will be set to the server's clock. 

If the file is empty (both forks are of 0 length), the user must have search or write access 
to all ancestors, except this file's parent directory, as well as write access to the parent 
directory. If either fork is not empty, the user must have search access to all ancestors is 
except the parent directory, as well as read and write access to the parent directory. 

The user must have previously called FPOpen Vol for this volume. 

This call cannot be used to set a file's name (use FPRename), parent Directory ID (use 
FPMoveAndRename), file number, or fork lengths. 

(continued) • 

FPSetFileParms 13-139 



Block format 

A null byte will be 
added if necessary 

lO make paramelers 
begin on an even 

boundary. 

13-140 FPSetFileParms 

Request 

rl byte(Sbits)~ 

-

-

-

-

-

• • • 

SelfileDirPanm; function 

0 

Volume ID 

Directory ID 

Bilmap 

PalhType 

Patlmame 

-

-

-

-

-

• • • 

f-----------~-----------1 
~---------------------• • • 

Paramelers • • • 



FPSetForkParms 

Inputs 

Outputs 

Result codes 

Algorithm 

Rights 

Notes 

This request sets the fork length for a specified open fork. Text in boldface applies to 
AFP Version 2.0 only. 

SRefNum (int) 

OForkRefNum (int) 

Bitmap (int) 

Fork Length (long) 

FPError (long) 

ParamErr 

BitmapErr 

DiskFu/1 

LockErr 

AccessDenied 

Vollocked 

session refnum 

open fork refnum 

bitmap describing which parameters are to be set; this field is 
the same as File Bitmap in the FPGetFileDirParms call; 
however, only the appropriate Fork Length bit can be set 

new end-of-fork value 

Session refnum or open fork refnum is unknown. 

An attempt was made to set a parameter that cannot be set 
with this call; bitmap is null. 

No more space exists on the volume. 

Locked range conflict exists. 

User does not have the rights listed below; in AFP 1.1, the 
volume is ReadOnly. 

In AFP 2.0, the volume is ReadOnly. 

The Bitmap and Fork Length are passed to the server, which changes the length of the 
fork specified by OForkRefNum. The server returns a BitmapErr result code if the call tries 
to set the length of the file's other fork or if it tries to set any other file parameter. 

The server returns a LockErr result code if the fork is truncated to eliminate a range or part 
of a range locked by another user. 

The fork must be open for write by the user. 

This call cannot be used to set a file's name (use FPRename), parent directory (use 
FPMoveAndRename), or file number. 

(colltinued) • 

FPSetForkParms 13-141 



Block format 

~lbyte(Sbits)~ 

SetForkPanns function 

0 

r- OForkRetNum -

r- Bitmap -

r- -

r- Fork Length -

r- -

13-142 FPSetForkParms 



FPSetVolParms 

Inputs 

Outputs 

Result codes 

Algorithm 

Notes 

This request sets the backup date for a specified volume. Text in boldface applies to AFP 
Version 2.0 only. 

SRefNum {itlt) 

Volume ID (int) 

Bitmap (int) 

Backup Date Oong) 

FPError Oong) 

ParamErr 

BitmapErr 

AccessDenied 

VolLocked 

session refnum 

volume identifier 

bitmap describing which parameters are to be set; this field is 
the same as that in the FPGetVolParms call; however, only 
the Backup Date bit can be set 

new backup date 

Session refnum or volume identifier is unknown. 

An attempt was made to set a parameter that cannot be set 
with this call; bitmap is null. 

In AFP 1.1, the volume is ReadOnly. 

In AFP 2.0, the volume is ReadOnly. 

The server changes the backup date for the specified volume. 

The user must have previously called FPOpenVol for this volume. 

(continued) • 

FPSetVolParms 13-143 



Block format Request 

~1 byte (8 bits)~ 

SetVolPanns function 

0 

r- Volume ID -

r- Bitmap -

- -

- Backup D-Jte -

r- -

13-144 FPSetVolParms 



FPWrite 

Inputs 

Outputs 

Result codes 

Algorithm 

This request writes a block of data to an open fork. 

SRefNum (int) session refnum 

OForkRefNum (int) open fork refnum 

Offset (long) byte offset from the beginning or end of the fork to where 
the write is to begin (should be negative to indicate a byte 
within the fork relative to the end of the fork) 

ReqCount (long) number of bytes to be written 

Start/EndFiag (bit) flag indicating whether the Offset field is relative to the 
beginning or end of the fork: 

0 = Start (relative to the beginning of the fork) 

1 = End (relative to the end of the fork) 

Fork data 

FPError (long) 

ActCount (long) number of bytes actually written to the fork 

LastWritten (long) the number of the byte just past the last byte written 

ParamErr Session refnum or open fork refnum is unknown. 

AccessDenied User does not have the rights listed below. 

LockErr Some or all of requested range is locked by another user. 

DiskFull No more space exists on the volume. 

The Start!EndFlag allows a block of data to be written at an offset relative to the end of 
the fork. Therefore, data can be written to a fork when the user does not know the exact 
end of fork, as can happen when multiple writers are concurrently modifying a fork. The 
server returns the number of the byte just past the last byte written. 

The server writes data to the open fork, starting at Offset number of bytes from the 
beginning or end of the fork. If the block of data to be written extends beyond the end 
of fork, the fork is extended. If part of the range is locked by another user, the server 
returns a LockErr result code and does not write any data to the fork. 

The file's Modification Date is not changed until the fork is closed. 

(continued) • 

FPWrite 13-145 



Rights 

Notes 

Block format 

13·146 FPWrite 

The fork must be open for write access by the user issuing this request. 

Lock the range before submitting this call. The underlying transport mechanism may 
force the request to be broken into multiple smaller requests. If the range is not locked 
when this call begins execution, it is possible for another user to lock some or all of the 
range before this call completes, causing the write to succeed partially. 

The fork data to be written is transmitted to the server in an intermediate exchange of 
ASP packets. 

Request Reply 

~1 byte (8 bits)~ ~1 byte (8 biL'i)~ 

Write function 

Start/EndFiag - -I 
-

LastWrinen -

- OForkRefNum - -

1-- -

1-- Offset -

1-- -

1-- -

1-- ReqCount -

- -



Chapter 14 Print Spooling Architecture 

CON TE NTS 

Printing without a spooler I 14-4 

Benefits of printing with a spooler I 14-5 

Background spoolers versus spooler/ servers I 14-6 

Impact of the Macintosh on printing I 14-6 

Printing without a spooler I 14-7 

Printing with a spooler/server I 14-9 

Controlling printer access I 14-10 

User authentication dialog I 14-12 

Direct passthrough I 14-14 

Spooler/ server queue management I 14-15 

About document structuring conventions I 14-18 
About PostScript document files I 14-18 

About PostScript print jobs I 14-19 
Comment format I 14-20 
Syntax conventions I 14-21 

Comments in documents I 14-22 

Prologue and script I 14-22 
Pages I 14-23 
Line length I 14-23 

14-1 



Structure comments I 14-23 
Header commems I 14-25 

Creation Date comment I 14-26 
Creator comment I 14-26 
For comment I 14-27 
job Identification comment I 14-27 
Title comment I 14-28 

Body comments I 14-28 
Exit Server comments I 14-29 
Page Marker comment I 14-30 
Procedure Set comments I 14-30 

Trailer commem I 14-31 

Resource comments I 14-32 
Conventions for using resource comments I 14-32 
Definitions I 14-33 

End Of File comment I 14-33 
Include Procedure Set comment I 14-33 

Query comments I 14-34 
Conventions for using query commems I 14-35 
Spooler responsibilities I 14-35 
Definitions I 14-36 

Feature Query comments I 14-37 
File Query comments I 14-37 
Font List Query comments I 14-38 
Font Query comments I 14-38 
Global Query comments I 14-39 
Printer Query comments I 14-39 
Procedure Set Query comments I 14-40 
Virtual Memory Status Query comments I 14-40 

Sample print streams I 14-41 

• 

14-2 CHAPTER 14 Print Spooling Architecture 



T H E W 0 R D S P 0 0 L is an acronym for Simultaneous Peripheral 

Operations On Line, and a print spooler is a hardware application or a software 

application (or both) that is used to store data on a disk temporarily until the 

printer is ready to process it. Since the print spooler handles the interaction 

required with the printer in order to accomplish the printing process, use of a 

spooler frees the originating computer, such as an Apple Macintosh computer, 

to perform other activities during the printing process. This chapter describes 

AppleTalk print spooling in general and compares printing with a spooler to 

printing without a spooler. In addition, since print spooling can be 

accomplished either by a spooler/server or as a background process on the 

originating computer, this chapter also compares these two options. • 

Print Spooling Architecture 14-3 



Printing without a spooler 

In an AppleTalk network, when printing is performed without the benefit of a spooler, the 
workstation initiating the print job is unavailable for other purposes until the printer has fmished 
processing the print job. This section discusses several factors that affect the length of time that a 
workstation is tied up for printing. 

When a Macintosh workstation user selects a document and invokes a print command, the 
workstation executes the document-composition application corresponding to that document. 
The application, in conjunction with the Macintosh Printing Manager, produces the print file 
information and sends it, in real time, to the printer, as shown in Figure 14-1. In this case, the 
document-composition application has control of the workstation until the print job is completely 
processed; during this time, a dialog takes place between the workstation and the printer, so the 
workstation is unavailable for any other purpose. The length of time that the workstation is 
unavailable to the user is determined by at least the following three factors: 

11 the speed at which the printer converts the print job into its physical printed form 

m the size of the print file being produced 

1!1 the type of print ftle being produced 

In an AppleTalk network, when the document-composition application calls the Printing Manager 
in the Macintosh to send a print job to a LaserWriter (or to an Image Writer), the Macintosh begins a 
series of AppleTalk calls in an attempt to establish a connection. These calls perform the following 
functions in order: 

1. Using the Name Binding Protocol (NBP) name-lookup operation, look for the currently selected 
printer and find its AppleTalk address. 

2 Using the Printer Access Protocol (PAP), attempt to open a connection with the printer. 

• Figure 14-1 Configuration for printing without a spooler 

Workstation 

Printer 

0 

14-4 C H A P T E R 14 Print Spooling Architecture 



If the printer is busy (that is, if the printer is servicing another job), it refuses to accept a new 
connection. In this case, the Printing Manager must continue trying to open the connection until 
the printer finishes processing the current job and breaks the connection established for that job, 
which frees the printer to establish another connection. During this time, the user's workstation is 
unavailable for other use. The length of time that the workstation is unavailable to the user is 
determined not only by the characteristics of the printer and of the user's own print job, but also 
by the following factors: 

• the size and type of job currently being printed 

• the number of other workstations contending for the printer 

It could be several minutes (on rare occasions, even hours) before the printer accepts the new print 
job. In the meantime, the user's workstation remains unavailable unless the user cancels the 
pending print request. 

Benefits of printing with a spooler 

Since a print spooler stores a printer-ready file on disk and interacts with the printer until the file is 
printed, introducing a print spooler between the document-composition system and the printer 
reduces the length of time that a workstation is tied up for printing. As soon as the print job is 
ready to be printed, the workstation sends the job to the spooler to store on disk, which releases 
the workstation for other uses. The spooler then establishes and maintains the required dialog with 
the printer until the print job is finished. 

A print spooler can also provide a mechanism for controlling access to a printer. The spooler can 
include a user authentication system that would force potential users to enter user identification 
information (such as user names and passwords) before allowing the users to gain access to a 
specific printer. The authentication function can be extended to include a wide variety of access 
options. For example, classes of user authorization could be established, and certain classes of print 
jobs could be given priority over other jobs. 

A print spooler also provides a mechanism for gathering statistical information about printer 
usage. An accounting department can use information about the printing activity of the users for 
billing purposes. In addition, management can use statistics about printer access to evaluate a site's 
design and to plan potential modifications. 

Benefits of printing with a spooler 14-5 



Background spoolers versus spooler/servers 

The following two types of spooler implementations can be used with AppleTalk workstations: 

• background spoolers 

• spooler/servers 

A background spooler is a software system that runs on a workstation as a background process to 
spool a print job to the user's local disk (usually a hard disk). With a background spooler, once the 
print job is ready for printing, the job becomes the spooler's responsibility. The spooler takes charge 
of storing the print file, establishing a connection with the printer, and interacting with the printer 
until the job is finished. 

When a background spooler is used, although the workstation must remain connected to the 
network until the job is processed, the user can continue to use the workstation for other 
operations. However, if the workstation is switched off, or if its connection to the network is 
otherwise broken, the print job will not be printed. In addition, background spoolers cannot provide 
mechanisms for controlling printer access or for gathering accounting data about printer usage. 

A spooler!sen;er is an intermediary (or agent) that is positioned between one or more 
workstations and one or more printers, as shown in Figure 14-2. When a spooler/server is used, the 
Macintosh Printing Manager produces the print file and sends it over the network to the 
spooler/server; the spooler/server then interacts with the printer to print the job. 

After receiving the print file, the spooler/server can terminate its connection with the 
workstation. Then, the workstation is free to perform other tasks or can be switched off. A 
spooler/server also provides an intermediate point between the workstation and the printer for 
inserting various kinds of access control and for gathering accounting statistics. 

Impact of the Macintosh on printing 

The Macintosh computer's printing architecture tightly binds a document's print file to the printer 
on which it is to be printed. When a print job is sent from a Macintosh to a LaserWriter or similar 
printer, the Printing Manager in the Macintosh queries the printer for various parameters 
throughout the printing process. Therefore, two-way communication is maintained between the 
Macintosh and the printer for the duration of the job. The spooler/server must emulate a printer 
during communication with a workstation by responding to queries in the print stream as it 
receives the print job. 

14-6 C H A P T E R 14 Print Spooling Architecture 



• Figure 14-2 Configuration for printing with a spooler/server 

D Network ( ~ 
'· ~ 

~ 
1=1 

Printer 

g 
g . 

0 

~ ~ 
D 

Spooler/ server 

D 
f==od 

Workstations 

The print stream that a Macintosh sends to a LaserWriter is in PostScript. However, document
structuring conventions have been developed to provide guidelines for embedding comments in 
PostScript code in order to communicate with document managers (such as print spoolers). These 
comments allow spoolers to respond to queries without having to interpret actual PostScript code. 

Printing without a spooler 

Figure 14-3 illustrates the protocol architecture used for printing without a spooler on a LaserWriter 
(or an ImageWriter) printer from AppleTalk workstations. You can also apply this model to other 
printers connected to an AppleTalk network. 

The Macintosh workstation uses NBP to obtain the AppleTalk address of the printer's listening 
socket. The Macintosh identifies the printer for NBP by the printer's complete NBP name (if the 
printer is a LaserWriter, the type field of the entity name is "LaserWriter"). 

Printing without a spooler 14-7 



• Figure 14-3 Protocol architecture for printing without a spooler 

Workstation 

( Printer 
Application 

I 
Printing Manager ( Printer software 

I I 
PAP (workstation side) PAP (server/printer side) 

NBP I ATP NBP I ATP 

DDP DDP 

ALAP ALAP 

~ ~ 
Network 

Once the AppleTalk address of the printer's listening socket is determined, the workstation 
opens a connection to the printer through PAP. When this connection is established, the 
workstation and the printer interact over the PAP connection. 

PAP is a client of the AppleTalk Transaction Protocol (A TP), which in tum uses the Datagram 
Delivery Protocol (DDP). PAP is an asymmetric protocol; the PAP code in the workstation is 
different from the PAP code in the printer. Figure 14-3 illustrates this difference. 

The commands and data sent through the PAP connection are printer-dependent. For the 
LaserWriter, the dialog is in the PostScript programming language. 

14-8 C H A P T E R 14 Print Spooling Architecture 



Printing with a spooler/server 

Figure 14-4 illustrates the printing architecture when a spooler/server is introduced between the 
Macintosh workstation and a printer (such as a LaserWriter or an Image Writer). The key feature of 
this architecture is that the spooler/server sets itself up as a surrogate printer. Doing this means 
that when a workstation looks for a printer of the appropriate type (for example, "LaserWriter"),. it 
views the spooler/server as such a printer. In fact, through this name-lookup process, the 
workstation cannot distinguish this spooler/server from a printer of the same type. (The 
spooler/server can set itself up as one or more printers with appropriate names.) 

The spooler/server responds to a PAP connection request from the workstation exactly the 
way a PAP-based printer would. Once the connection is established, the spooler process emulates all 
of the relevant aspects of a workstation's interaction with a printer, while storing the print files in 
its internal storage (typically, a hard disk). 

• Figure 14-4 Protocol architecture for printing with a spooler/server 

Workstation 

( Print spooler/server Printer 
Application 

I Server process 

( Printing Manager ( Spooler ( Spooler l ( Printer software 
in·process out-process 

I I 
PAP u PAP PAP (workstation side) (s~rwr side) (workstation side) PAP (server/printer side) 

1\BP I ATP r\BP I :\TP r\BP I ATI' 

DDI' DDP DDP 

Data link Data link Data link 

n 
~ ~ l m_ 

Network 

Printing with a spooler/server 14-9 



Through PAP, it is possible to establish multiple connections to a printer. The design of the 
printer determines the number of connections that a printer services simultaneously. LaserWriter 
and Image Writer printers accept only one connection (therefore, one job) at a time. Typically, 
spooler/servers should accept several connections at a time in order to reduce the delay experienced 
by workstations that are trying to print. 

The spooler/server includes a spooler out-process, which functions exactly as a workstation in 
transmitting jobs to the printer. The spooler out-process picks up spooled print files from its 
internal storage and prints them on the destination printer in exactly the same way that a 
workstation would. 

Together with the appropriate protocol modules and drivers, the spooler process converts the 
spooler/server into a two-sided entity, which appears as a printer to the workstations and as a 
workstation to the printers. Consequently, the spooler/server includes both the server-end PAP and 
the workstation-end PAP. 

A simple modification of the print-spooling architecture makes it possible to include spooling 
either to printers that are directly plugged into the spooler/server or to printers with which the 
spooler/server communicates through a protocol other than PAP. In these cases, the in-process side 
of the spooler/server remains the same as the in-process side shown in Figure 14-4. However, the 
out-process side is modified to provide a mechanism for transmitting the print files from the 
server's internal storage to the actual printer. If you are designing a spooler for these purposes, 
while you can tailor the out-process to meet specific needs, the in-process must strictly obey the 
disciplines for printers dictated by PAP. Figure 14-5 provides an example of this type of 
architecture. In this figure, X represents non-PAP modules and drivers. 

Controlling printer access 
Because a spooler/server is positioned between the workstations and the printers, it can be used to 
control printer access. When a spooler/server is controlling access to a printer, workstations can 
communicate with this printer only through the spooler/server. 

In this case, the spooler/server provides an intermediary location for 

• implementing a user authentication system (see "User Authentication Dialog," next, for details 
on this implementation) 

• gathering and storing global statistics about printer use (for accounting or planning purposes) 

14-10 C H A P T E R I 4 Print Spooling Architecture 



• Figure 14-5 Protocol architecture for alternate spooling environments 

Workstation 

Application ) 
I 

Printing Manager 

I 
PAP (workstation side) 

NBP I ATP 

DDP 

Data link 

5{ 
Network 

Print spooler/server 

Server process 

I ( S~er Spooler 
in-process out-process 

I 
PAP 

I (server side) 

I\BP I ATP 
X 

DDP 

Data link 

L _] 

Printer 

I Printer software 

Not necessarily a network; 
could he a direct connection 

X 

For example, if a network contains three printers, one printer can be dedicated to jobs from the 
executive staff; the other two printers can be made available to the rest of the staff and used based 
on which has the least activity. In addition, the number of pages printed on each printer can be 
recorded so that the activity levels on the three printers can be compared. 

To restrict direct access to a particular printer and to force workstations to obtain access to the 
printer through the spooler/server, the spooler process renames the printer so that other network 
devices can no longer recognize it as a printer. In this case, the spooler opens a connection to a 
printer at startup and then sends a command to the printer to change the type field of its name to 
a string that does not correspond to any type of printer. For example, a spooler/server may change 
the type field of the name of a LaserWriter printer from "LaserWriter" to an optional new string. 
Next, the spooler/server opens its own PAP listening socket and assigns itself a name with 

Controlling printer access 14-11 



"LaserWriter" in the type field (this name may be either a new string or the string that the printer 
used before it was renamed). As a result, when workstations use the NBP name-lookup process to 
search for the printer, they find the spooler/server instead of the printer. 

This technique of renaming the printer is not mandated by the print spooling architecture. 
Additionally, if the spooler/server also includes a direct passthrough service, workstations can still 
print directly to a printer that has been renamed. When direct passthrough is used, rather than 
spooling files for the printer, the spooler/server passes messages between the workstations and the 
printer (see "Direct Passthrough" later in this chapter). 

User authentication dialog 

just after the workstation opens a PAP connection to the spooler/server (or to a printer), the 
devices engage in an exchange of messages known as the user authentication dialog. This dialog 
consists of a series of messages whose format coincides with PostScript comment conventions. 
The spooler/server must be able to carry on this dialog. Details on using PostScript comments are 
provided later in this chapter. 

+ Note: The discussion that follows applies to printers that implement PostScript (in 
particular, LaserWriter printers). Other AppleTalk printers (such as ImageWriter printers) 
require different mechanisms. 

The first step of the dialog is to determine whether the device to which the PAP connection 
has been opened is a spooler/server. To do this, the workstation uses a SpoolerQuery with the 
following format: 

%%?BeginQuery: rUaSpooler 

f alse = fl ush 
%% ?EndQuery: t r ue 

If the device is a PostScript device, such as the LaserWriter, and if it does not have the ability to 
respond to this query, the second line causes the device to send back false as a reply. Since a 
LaserWriter does not interpret comments, it responds with fa l se, indicating that it is not a 
spooler. However, if the device is a spooler/server, when it receives the first line of this query, it 
skips the second line and sends back true as a reply, indicating that it is a spooler. 

14-12 CHAPTER 14 Print Spooling Architecture 



If the reply to the SpoolerQuery query is false, the user authentication dialog is skipped, and 
the connection is used for printing directly to the printer. 

However, if the reply to the SpoolerQuery query is true, the user authentication dialog is 
continued. The next step in this dialog is to query for a list of the user authentication methods 
(UAMs) that the particular spooler handles. The following is an example of this query: 

%%?BeginUAMethodsQuery 
%%?EndUAMethodsQuery: NoUserLogin 

The response to this query is a set of one or more strings, with each string identifying a user 
authentication method that the spooler supports. The response must terminate with either an 
asterisk (*)or the string NoUserLogin. There are three standard user authentication methods 
specified by Apple: 

• NoUserAuthent 

• CleartxtPasswrd 

• RandnumExchange 

If you design other special methods for user authentication, you should define a string to identify 
each of these methods. 

+ Note: There is a fourth reply, NoUserLogin, that is used for spoolers that do not support 
logging in of users. A spooler that does not want to control user access can return the string 
NoUserLogin. In this case, the workstation bypasses the login dialog completely. 

The first standard authentication method requires the spooler to receive a login string. The 
workstation sends the spooler the following: 

%%Login: NoUserAuthent 

The spooler must reply with the message LoginOK, and the workstation can then continue with 
the printing phase of the connection. 

The second standard authentication method requires that the spooler receive a user name string 
and a password, which it compares with a user authentication database to verify that the user is 
valid. The workstation sends the spooler the following: 

%%Login: CleartxtPasswrd <user name> <password> 

User authentication dialog 14-13 



If the spooler finds a match for the user name and password pair in its user authentication 
database, then the spooler responds with the message LoginOK. The workstation can then 
continue the printing phase of the connection. However, if the user information does not match an 
entry in the user authentication database, then the spooler responds with the message 
InvalidUser. In this case, the spooler does not permit further use of the PAP connection by 
the user and disconnects the workstation after a few seconds. l11is disconnection interval should 
be long enough to ensure the delivery of the InvalidUser message to the workstation. 

To prevent peek programs from being used to spy and read passwords out of network 
packets, the third standard authentication method does not send the password over the network 
cable. In this case, the workstation sends the following: 

%%Login: RandnumExchange <user name> 

Upon receiving this information, the spooler examines its user authentication database to see if the 
indicated user name exists. If the user name is not found in the database, the spooler sends back the 
message InvalidUser and disconnects the workstation, as previously described. If the user 
name is found, the spooler sends back a message that consists of the word Randnum, followed by 
a space and a 16-character hexadecimal ASCII representation of a 64-bit random number that the 
server generates. Upon receiving the random number, the workstation uses the user password as 
the key to encrypt this random number by using the National Bureau of Standards Data Encryption 
Standard (NBS-DES) algorithm. Then, the workstation sends the following reply in which xxxx ... 
represents the encrypted random number: 

%%LoginContinue : RandnumExchange <XXXX . .. > 

In the meantime, the spooler uses the user's password from its database as the key to encrypt its 
random number. The spooler compares the quantity produced by this encryption with the en
crypted value sent by the workstation. If the two values are equal, the user is valid, so the spooler 
returns the Log i nOK reply and the printing phase of the connection can begin. If the values are 
unequal, the spooler replies with the message InvalidUser and disconnects the workstation. 

Direct passthrough 

In addition to providing a user authentication service, you can design the spooler/server to allow a 
workstation to establish a direct (or passthrough) connection to a printer. When a direct 
passthrough is established, the spooler does not spool files for printing, but simply passes 
messages back and forth between the workstation and the printer. 

14-14 C H A P T E R 14 Print Spooling Architecture 



Direct passthrough is required when the spooler/server has renamed the printer and when a 
workstation needs to communicate with the printer directly. For example, certain applications can 
optimize the use of laserWriter virtual memory by querying the printer at various stages of the 
print job and then modifying the print file to conform to the actual situation during printing. 

There are two ways of accommodating such applications. The first approach, known as spooler 
bypass, is to leave the printer's name unaltered, so that it is available for direct access by both the 
workstations and the spooler/server. In this case, the spooler/server must contend with 
workstations attempting to gain access to the printer. 

The second approach is to allow the spooler/server to rename the printer and to force the 
spooler/server to provide a passthrough option to a workstation that requests a direct connection 
to the printer. In this case, the workstation connects to the spooler in the typical manner. After 
completing the user authentication dialog, the workstation sends a PostScript comment to request 
a passthrough connection to the printer. This comment takes the following form: 

%%?BeginPassThroughQuery 
%%?EndPassThroughQuery fals e 

If the spooler receiving this request does not support passthrough, it responds with false; if the 
spooler does support passthrough, it responds with true. After a spooler responds with true, it 
acts as a forwarding agent, passing messages between the workstation and the printer in real time. 

If there are other jobs for the specified printer in the spooler's queue, the workstation 
requesting direct passthrough must wait until the spooler finishes all of the jobs for that printer 
and succeeds in establishing a new connection to the printer. 

Spooler/server queue management 
You can design a spooler/server application to offer spool-management functions, such as 
rearranging the printing order of the jobs in the queue, changing jobs from queue to queue, or 
deleting jobs from the queue. However, neither PAP nor the Macintosh Printing Manager are 
designed to accommodate queue-management functions. Therefore, you must provide such 
functionality through independent means. 

Since the design of a mechanism that provides queue management depends on the specific 
characteristics and functional design of the spooler/server, Apple has not established a standard 
design for the queue-management functions. 

Spooler/server queue management 14-15 



A spooler/server that is implemented on a system with a user interface such as a screen, a 
mouse, and a keyboard could allow queue management through user input at the spooler/server 
station. The print spooling architecture does not specify the nature and details of this functionality. 
Therefore, third-party developers can add value to the spooler/servers that they develop. 

For closed spooler/servers (that is, spooler/servers that do not have a user interface), you can 
develop a printer-queue protocol for queue management. Figure 14-6 provides an example of a print 
spooling architecture that incorporates such a protocol. In this figure, PQP represents the printer
queue protocol. The example assumes that the user path to this queue-management service will be 
independent of the path from the application to the Printing Manager to PAP that is used by the 
actual printing operation. In the case of rl1e Macintosh, one possibility is the use of a desk accessory 
and a private protocol. This approach leads to different desk accessories and different queue
management protocols for each spooler/server design. 

If you are developing applications that generate PostScript code destined for PostScript 
printers, you should incorporate the Adobe PostScript Document Structuring Conventions in your 
PostScript code to ensure that the documents will be fully spoolable. If you are developing a 
spooler/server to pass PostScript document files to a PostScript printer in an AppleTalk network, 
the spooler/server must be able to interpret and respond to these comments. 

Printing on a LaserWriter depends on two-way communication between the LaserWriter and 
the workstation. Therefore, when emulating a LaserWriter, the print spooler must be able to 
maintain a dialog with a workstation. The PostScript comment conventions make it possible for a 
document manager (such as a print spooler, server, or postprocessor) to maintain this type of a 
dialog without having to interpret actual PostScript code. 

The comments, which are interpreted by the print spooler, are ignored by the PostScript 
interpreter in the printer (just as the spooler ignores the PostScript code because it cannot interpret 
it). The comment layer in a PostScript program is cooperative rather than enforced; that is, although 
the PostScript interpreter always ignores the comments, the document manager may or may not 
interpret them. 

14-16 CHAPTER 14 Print Spooling Architecture 



• Figure 14-6 Protocol architecture for spooler/server queue managemenr 

Workstation 

DDI' 

Data link 

Queue
management 

desk accessory 

Network 

The PostScript commenrs: 

Print spooler/server 

DDP 

Data link 

• provide information needed by documenr managers for merging, editing, spooling, and 
accounting 

• provide user-friendly commenrs that describe the print job and divide it into sections 

• provide summary information about the resources required by the print job 

• surround machine-dependent and job-specific PostScript code 

• surround PostScript code that significantly changes the state of the printer 

• surround PostScript code that requires a response from the printer and define the minimum 
valid response 

Spooler/server queue management 14-17 



About document structuring conventions 

Adobe Systems has developed general document structuring conventions for PostScript comments 
so that they can be used universally with a variety of document managers. These conventions 
include three general classes of comments: 

Comment type 

structure 

resource 

query 

Definition 

delimits structural components of a PostScript document file; delimits 
special text blocks; provides document and page setup information 

specifies resources that are required in order to print a PostScript documenr 
but that are not included within its text (for example, fonts, specific paper 
color, collating order, or even printer features such as size of paper trays) 

checks the status of the printer (for example, availability of fonts, files, and 
virtual memory) 

If a PostScript document file obeys a proper subset of these structuring conventions, it is said to 
be conforming to the PostScript comment connections. If a file does not follow the structuring· 
conventions, it is said to be nonconforming and cannot be processed by AppleTalk spoolers 
designed to interface with PostScript printers. 

The use of comments is designed to facilitate communication between document
composition systems and document managers. Therefore, the comments that make up the subset 
to which the document file must conform depend on the installation. For example, the document
composition system can include the resource requirements in the comment subset to ensure that 
these requirements are handled properly. However, if a document-composition system relies on the 
printing environment (the spooler and printer) to handle resource requirements appropriately, 
resource comments need not be included in the comment subset. 

About PostScript document ftles 

A conforming PostScript document file includes the following structural features: 

• prologue 

• script 

• pages 

14-18 C H A P T E R 14 Print Spooling Architecture 



The prologue is a set of procedure definitions dm define operations required by a document
composition system. The PostScript document begins with a prologue, which typically contains 
application-dependent definitions and which is stored in a place accessible to an application 
program. The prologue is used as a standard preface to each page and, generally, should not contain 
executable code. 

The script is usually generated automatically by an application program. The script, which 
contains the data that represents a particular document, should not contain any definitions. The 
script of a multipage document is organized as a sequence of independent single-page descriptions. 

The pages in a PostScript script are functionally independent of each other, but they are 
dependent on the definitions in the prologue. The pages can be executed in any order and rearranged 
without affecting the printed document. This means that the pages can be printed in parallel as 
long as the prologue definitions are available to each page. 

A document file can contain another document file description as part of its script. An 
illustration embedded in a document is an example of this structure. One benefit of PostScript 
document descriptions is that they allow documents from different sources to be merged for final 
printing. 

About PostScript print jobs 

In understanding PostScript document files, you must understand the difference between a 
document file and a print job. A document file is a data representation that may be transmitted, 
edited, stored, spooled, or otherwise processed. A document is transmitted to a printer in a series of 
print jobs, each of which contains a certain type of code. There are three types of PostScript print 
jobs with which you should be familiar: 

• standard print jobs 

• queries 

• exit server jobs 

Standard print jobs are those jobs destined for the printer. The print spooler passes these jobs to 
the PostScript printer. They contain the code for the printed document. 

Queries are print jobs that check printer status. Queries require a response from the printer. A 
print spooler must be able to respond to these queries by interpreting query comments. 

About PostScript print jobs 14-19 



Exit seroer jobs bypass the normal server-loop save/restore context. They contain a block of 
text with resources for the printer (such as fonts that are being downloaded to the printer), rather 
than an actual printing job. The print spooler generally stores the resources that are contained in an 
exit server job on its hard disk so that they are permanently available to the printer. 

The job type is specified by the Job Identification comment, which is the first line of every 
print job. Comments consist of a percent sign (%) followed by text and terminated by a newline 
character. The PostScript interpreter completely ignores the comments. However, comments 
conforming to the file-structuring conventions can query or convey structural information to 
document managers. Comments that contain structural information start with %! or %%. Query 
comments begin with%%?. Comments that do not start with one of these three notations are 
ignored by document managers (as well as by the PostScript interpreters). 

Comment format 

The format of a PostScript comment depends on its function. Comments interpreted by document 
managers must be in one of the following forms. In these examples, angle brackets ( < >) designate 
required portions of the comment, and square brackets ( [ 1 ) indicate optional portions. 

This form is used at the beginning of the PostScript job to identify the job type: 

%! <keyword> [<argument> ••• ] 

This form is used to mark a position or event in the print stream or to supply a value for a keyword: 

%%<keyword> [<argument> •.• ] 

This form is used with machine-dependent or job-dependent code and may supply values that 
define the specific function of the code: 

%%Begin <keyword> [<argument> ••• ] 

<PostScript code> 

%%End <keyword> 

This form is used for queries requiring a response from the printer: 

%%?Begin <keyword> [<argument> ••• ] 

<PostScript code> 

%%?End <keyword> <response> [<response> ••• ] 

14-20 C H A P T E R 14 Print Spooling Architecture 



Syntax conventions 

PostScript comments must adhere to the following syntax conventions: 

• The case of letters in a comment is significant. 

• Each comment must begin with %. 

• No spaces are allowed between the o/o%, %!, or %%? and the keyword, as shown in the following 
example: 

%% keyword 

• Either a colon, one space, or both a colon and a space can be used to separate a keyword and its 
first argument; however, the colon, when present, is not optional. These three fonns are 
shown in the following examples: 

%% keyword: argument 

%%keyword: argument 

%%keyword argument 

• When a colon follows a keyword, no space is allowed between the keyword and the colon. 

• One space should be used between the colon and the first value. 

• One space should be used between values, as shown in the following example: 

%% keyword argument valuel value2 

• A newline character must follow immediately after the last value. 

• Comments may not exceed 255 characters. 

• A comment line can be continued on subsequent lines by beginning the continuation with 
%%+, as shown in the following example: 

%%keyword : argument value value value value 

%%+ value value value 

• Either parentheses or double quotations marks can be used to set off values, as shown in the 
following examples: 

%%keyword : a rgument (value) 

%%keyword: argument "value " 

• A string argument can contain spaces, provided it is enclosed in either parentheses or double 
quotation marks, as shown in the following examples: 

%%keyword: (st ring comprising argume nt) 

%%keyword: "string comprising a rgument" 

About PostScript print jobs 14-21 



Comments in documents 

The first line of every PostScript document file must start with %!, which identifies the program as 
a PostScript print job. The %! introduces the job Identification comment, which specifies the 
Adobe code version and, optionally, the job rype, as shown in this example: 

%!PS-Adobe-2.0 

The job Identification comment should be used only once in each print job. If d1e version is 2.0, the 
print job conforms to version 2.0 of the Adobe PostScript Document Structuring Conventions. 

Following the job Identification comment is the text of the document itself, interspersed with 
comment lines that contain structural information and other information about the document. 
The rest of the comments in a PostScript document fi le begin with %% (or %? if the file is a query 
job) and are followed by a keyword. If the comments require one or more values, d1e keyword is 
followed by a colon (rypically) and the value or values. 

Some structure comments and all query comments occur in pairs of beginning and ending 
comments that surround PostScript code. Comment pairs that enclose PostScript code can also 
enclose other comments or comment pairs. 

All conforming document files must end with %%EOF, which indicates d1ar an End Of File 
(EOF) message is being sent to the PostScript device. 

The following general constraints apply to all document files that conform to version 2.0 of the 
Adobe PostScript Document Structuring Conventions. If document files do not adhere to these 
constraints, they are considered nonconforming and may nor be handled reliably by document 
managers. 

Prologue and script 

A conforming PostScript document should be divided into a prologue and a script. Nothing can be 
executed in d1e prologue and no definitions can be included in the script. The prologue should 
always be designed so rhar it can be removed from a document file and downloaded permanently 
into the printer; then, when subsequent document files containing only the script are downloaded, 
they can depend on the preloaded prologue for definitions. See "About PostScript Document Files" 
earlier in d1is chapter for a more detailed discussion of prologues and scripts. 

14-22 CHA PTER 14 Print Spooling Architecture 



Pages 

When the Page Marker comment is used within the body of a document, the pages in the 
document do not depend on each other. Each page can rely on definitions in the prologue, but a 
page should not depend on a state set in another page of the document. Keeping pages independent 
allows document managers to rearrange the document pages without affecting the execution of 
the document. For more information, see "About PostScript Document Files" earlier in this chapter. 

Une length 

A PostScript comment can contain a maximum of 255 characters. There are no constraints on the 
placement of line breaks. When a comment is continued on the next line, the new line should begin 
with the notation o/oo/o+ to indicate that the comment line is continuing. This convention is used 
most frequently for comments that contain a list of font names, as shown in the following 
example: 

%%Document Fonts: Palatino- Roman Palatino- Bold 
%%+ Palatino-Italic Palatino-Bold Italic Courier 
%%+ Optima Times Geneva Chicago 

Structure comments 

This section describes the structure comments used in a PostScript document me that an 
AppleTalk print spooler interprets. These comments are the typical structure comments that 
should be included in PostScript code in order to communicate with an Apple Talk spooler. In 
addition, if you are creating a spooler to run in an Apple Talk network, the spooler should be able to 
interpret this subset of structure comments. For additional structure comments that can be 
included in PostScript document flies, refer to Adobe Document Structuring Conventions, 
Vet:5ion 2.0. 

Structure comments 14.23 



Structure comments serve the following purposes: 

• They delimit the structural components of a PostScript page. For example, they mark the 
prologue, script, and PostScript page breaks. 

• They provide document and page setup information (such as the document title, date, and 
page count). 

• They provide a markup convention for noting the beginning and ending of particular pieces of 
the document file that might need to be identified for further use. For example, structure 
comments can be used to mark embedded font files or procedure defmitions, facilitating their 
removal from the print job or the restructuring of the print job. 

Structure comments are divided into the following three categories, which correspond to the parts 
of the document file in which the comments are used: 

Comment type 

header 

body 

trailer 

Definition 

precedes any noncomment PostScript program text and provides 
information about the document as a whole 

interspersed throughout the PostScript program text; serves mainly to 
delimit the various parts of the document file 

follows all the noncomment PostScript program text and provides 
additional information about the document as a whole 

The rest of this chapter describes these categories and the comments that they include. Comment 
definitions are listed alphabetically under each category and include syntax and an example. The 
structure comments are summarized as follows: 

Comment 

Header 

%!PS-Adobe-2.0 [identifier] 

%%CreationDate: text 

%%Creator: text 

%%For: text 

%%Title: text 

Description 

version number/job identifier 

date assigned to document 

name of document-composition application 

person for whom document is being printed 

document title 

14-24 CHAPTER 14 Print Spooling Architecture 



Comment 

Body 

%%BeginExitServer: password 

%% EndExitServer 

%%BeginProcSet : name version 

revision 

%%EndProcSet 

%% Page: label ordinal 

%% Trailer 

Header comments 

Description (continued) 

introduction to text registered outside of normal 
server loop 

delimiters of procedure subset 

indication of PostScript page break 

indication of boundary between script and trailer 

Header comments provide general infom1ation about the PostScript document file. They include 
the following types of global information for the print spooler: 

• code and job identification 

• document title 

• document-creation date 

• identification of document-composition application 

• user name of document originator 

+ Note: A PostScript header can also include other general comments that are not needed by a 
print spooler (and that are not interpreted by Apple's LaserShare print spooler), but that 
could be used by other types of documenr managers. This chapter describes only those 
comments interpreted by LaserShare. Refer to the Adobe Document Strncturing 
Conventions, Version 2.0, for other header comments. 

Header comments appear at the beginning of a document file, before any executable PostScript 
code. Every PostScript job must begin with a job Idenrification comment. The header comments 
continue unril the first occurrence of a line that does not start with %%or%! (or until an End 
Comments comment; see the Adobe Document Strncturing Conventions, Ver.5ion 2.0, for a 
description of this comment). Header comments should be contiguous; if the document manager 

Structure comments 14-25 



encounters a line that does not begin with %%, it may quit parsing for header comments. In 
general, header comments make up most of the document prologue, ending immediately before the 
PostScript document description begins. 

After the Job Identification comment, the header comments can be listed in any order. 
However, if two or more comments contain the same keyword, the first comment (and its 
corresponding value) is the one that the spooler interprets. In this case, the spooler ignores the 
other occurrences of the comment. This process makes it possible to insert new comments at the 
beginning of a file without having to search for and delete the old comments embedded in the file. 

Some header comments can be deferred to the trailer at the end of the document file. This 
practice is common for comments containing information that is not available until the end of the 
document, such as page counts. In this case, a comment with the same keyword and the value 
(a tend) must appear in the header-comments section. 

Creation Date comment 

The Creation Date comment indicates the date, the time, or both the date and time assigned to the 
document. The text string for this comment can be in any format because the date and time are 
used only for informational purposes (for example, on banner pages). 

Syntax: %%CreationDate: text 

Example: %%CreationDate: Tuesday, July 13, 1987 

Creator comment 

The Creator comment identifies the creator of the document file. The creator is usually the 
document-composition application that was used to generate the document. However, the text 
string may optionally (or additionally) include the name of the person creating the document. 

Syntax: %%Creator: text 

Example: %%Creator: Write 

14-26 CHAPTER 14 Print Spooling Architecture 



For comment 

The For comment specifies for whom the document is being printed. This specification is usually 
the user name of the person who composed the document. This information can be included in the 
banner page and can be used for routing the document to the person printing it. 

Syntax: %%For: text 

Example: %%For: Srni th, John 

Job Identification comment 

The Job Identification comment identifies the PostScript job as a document file that conforms to 
version 2.0 of the Adobe PostScript Document Structuring Conventions. The Job Identification 
comment must be the ftrst line of the document ftle. (To avoid confusion, the ftle should not 
contain any lines, other than the Job Identification comment, that begin with %!.) 

This comment also identifles the PostScript job type of the document file. If no keyword is 
included in the comment, the job is a standard PostScript printing job. However, the comment can 
include a keyword that identifies the job as either a query job or an exit server job. PostScript job 
types are explained in "About PostScript Print Jobs" earlier in this chapter. 

If the Query keyword is included in the comment, the entire job consists of PostScript 
queries to which the spooler must reply. "Query Comments," later in this chapter, contains a 
discussion of these comments. 

If the Exit Server keyword is included in the comment, the job will execute PostScript exit 
server commands to register the contents of the file outside of the normal server-loop save/restore 
context. For example, the ftle may include code for special type fonts that will be permanently 
available to the printer. See "Exit Server Comments" later in this chapter for more information. 

Syntax: %!PS-Adobe-2.0 [identifier] 

Examples: %! PS-Adobe-2. 0 
%!PS-Adobe-2.0 Query 
%!PS-Adobe-2.0 ExitServer 

Structure comments 14-27 



Title comment 

The Title commem contains a text title for the document. This title can be used to identify the 
documem on the spooler queue, or it may appear on banner pages to help route the documents. The 
text string used for the title may be derived from an application-level documem name or from a 
filename. 

Syntax: %%Title: text 

Example: %%Title : Project Status Report 

Body comments 

Body comments provide structural information about the PostScript document file's organization. 
They act as boundary markers berween parts of a document file (for example, to separate the 
prologue from the script or to mark PostScript page breaks). These markers enable an application to 
extract page subsets or to reverse the order of the pages in a PostScript document file while still 
maintaining tl1e structure of the document by preserving the prologue at the beginning and the 
trailer at the end of the file. 

Body comments can appear anywhere in a document file. Since body comments frequently 
delimit a block of tex't in a PostScript document file, they usually come in pairs, each with a 
beginning comment and an ending comment. 

A print spooler need only interpret those PostScript comments that have a direct effect on 
document spooling. Therefore, the LaserShare spooler interprets only a subset of the available 
PostScript body comments. LaserShare ignores any comments that it does not recognize. PostScript 
document files generated with the Macintosh computer's LaserWriter driver include body 
comments that do not affect spooling and are therefore ignored by the LaserShare spooler. These 
comments are not documented here; the following comment descriptions are for those body 
comments that LaserShare interprets. Refer to the Adobe Document Structuring Conventions, 
Version 2.0, for descriptions of other body comments. 

14-28 CHAPTER 14 Print Spooling Architecture 



Exit Server comments 

The Exit Server comments surround PostScript exit server code. The PostScript exit server code 
introduces a segment of PostScript code, known as a procedure set, that is to be registered outside 
of the normal server-loop save/restore context. The Exit Server comments immediately precede the 
Begin Procedure Set comment, which marks the beginning of the text block that bypasses the 
server loop. Rather than being an actual printing job, the procedure set introduced by Exit Server 
comments contains resources for the printer, such as fonts that are being downloaded. See 
"Procedure Set Comments" later in this chapter for further explanation. 

Usually, the Exit Server comments are included only in an exit server job. An exit server job 
begins with the%! PS-Adobe-2. 0 Exit Server comment and contains a procedure set 
with permanent resources for the printer. These resources are generally stored on the spooler's disk. 
"Sample Print Streams," later in this chapter, provides an example of an exit server job. 

+ Note: Although it is not recommended, the Exit Server comments occasionally can appear as 
part of a standard PostScript printing job. In this case, when LaserShare encounters the Exit 
Server comments, it strips them out of the print stream; if a procedure set follows the Exit 
Server comments, LaserShare does not store the procedure set as a permanent resource, but 
handles it like any standard procedure set included in a document file. See "Procedure Set 
Comments" and "Include Procedure Set Comment" later in this chapter. 

Syntax: %%BeginExitServer: password 
%%EndExitServer 

Exampk~ %%BeginExitServer: 000000 
serverdict begin 
000000 
exit server 

%%EndExitServer 

Structure comments 14-29 



Page Marker comment 

The Page Marker comment marks PostScript page boundaries. This comment usually occurs once 
for each page and provides information about the page's requirements and structure. Page Marker 
comments are used to preserve the page order in PostScript documents; they act as counters to 
track the number of pages in the document file. 

The Page Marker comment requires two arguments: 

Argument 

label 

ordinal 

Description 

optional information to identify the page according to the document's internal 
numbering scheme (The text string should not contain blank space characters.) 

a number reflecting the position of the page within the body of the PostScript 
me (The number must be a positive integer.) 

A question mark (?) can be used for either of these arguments if the number is unknown. 
The Page Marker comment is used frequently. It is required so that pages do not rely on each 

other but do rely only on the definitions made in the prologue of the document file. A spooler 
should be able to physically rearrange the contents of the print file into a different order (or to print 
pages in parallel) based on the information in the Page Marker comment. 

Syntax: %%Page: label ordinal 

Example: %%Page: ? 1 

Procedure Set comments 

The Procedure Set comments surround a procedure set within the body of a PostScript document 
flle. The procedure set typically represents a subset of the document prologue; the prologue can be 
broken into several subpackages known as procedure sets. Procedure sets can be used to defme 
groups of routines for different imaging requirements. For example, a procedure set may include the 
code for generating specialized fonts. 

14.30 C H A P T E R 14 Print Spooling Architecture 



Each procedure set is identified by the following three arguments: 

Argument Description 

name a disk ftlename or the PostScript name by which the procedure set is identified 

version a sequential number that uniquely identifies a procedure set from earlier or later 
versions with the same name 

revision a sequential number that uniquely identifies different releases within the same 
version of a procedure set 

Frequently, the BeginP roc Set comment is preceded by a pair of Exit Server comments 
indicating that the routines in the procedure set should be made permanently available to the 
printer. In fact, the Procedure Set comments frequently surround the code in an exit seiVer job. See 
"About PostScript Print jobs" and "Exit Server Comments," earlier in this chapter, for more 
information about this use of procedure sets. 

Syntax: %%BeginProcSet: name version revision 
%%EndProcSet 

Examples: %%BeginProcSet: "exampleProcSet" 1 0 
/aSimpleProc 
{newpath 200 350 150 0 360 arc closepath fill} 
def 

%%EndProcSet 

Traller comment 

The document trailer follows the Trailer body comment and contains any postprocessing or 
cleanup comments, including any header comments that were deferred to the end of the 
document. 

The use of trailer comments in PostScript document ftles is optional; Apple Talk spoolers are not 
required to recognize trailer comments. Refer to the Adobe Document Structuring Conventions, 
Vernon 2.0, for descriptions of the trailer comments that Adobe has defined and for details on 
using trailer comments. 

Structure comments 14-31 



The Trailer comment should occur once in each document file, at the end of the document 
script. TI1is comment separates the script from any trailer comments that may be included in the 
document file. The print spooler uses the Trailer comment to confirm that the printer has received 
the entire print document (that is, to detect that the print job was not aborted midstream). Any 
conforming PostScript document file is expected to include a Trailer comment at the end of its 
script. 

Syntax: %%Trailer 

Example: %%Trailer 

Resource comments 

This section describes the resource comments used in PostScript document files that are 
interpreted by AppleTalk print spoolers. These comments are the typical resource comments that 
should be included in PostScript code in order to communicate wit.h an AppleTalk spooler. In 
addition, if you are creating a spooler to run in an AppleTalk network, the spooler should be able to 
interpret these resource comments. Refer to the Adobe Document Structuring Conventions, 
Vetsion 2.0, for additional resource comments that can be included in PostScript document files. 

Resource comments (or resource requirements) specify resources that are required in order to 
print the PostScript document but are not embedded within its text. (Prologues, fonts, and 
included files are examples of such resources.) The resource comments can also specify other 
document requirements, which can vary from particular paper-stock form, to a specific paper color, 
to a specific collating order. In addition, resource comments can specify requirements for individual 
printer features, such as the number or size of paper trays that should be anached to the printer. 

Conventions for using resource comments 

Resource comments can appear anywhere in a document. They indicate that the named resource 
should be included in the document at the point at which the comment is inserted. The code 
included can be for a font, a disk file, or any other resource. lf resource comments appear in the 
body of a document, a corresponding comment should appear in the header of the document to 
indicate that the entire document requires the files. 

14-32 CHAPTER 14 Print Spooling Architecture 



The number and types of resource comments included in a document file depend partially on 
the degree to which the document-composition application relies on the printing environment to 
provide the required resources. If the document-composition application relies on the printing 
environment to supply resources, few resource comments are used in the document ftle; however, 
if the document-composition application chooses to ensure that resources are available by 
providing them itself, more resource comments appear in the document file. (Documents with 
extensive resource requirements are common in large distributed networks that take print spooling 
for granted and that have centralized resource management.) 

Definitions 

AppleTalk print spoolers should be able to interpret and respond to the two resource comments 
summarized below. The Adobe Document Structuring Conventions, Version 2.0, describes 
additional resource comments that can be used for communicating with spoolers. 

Comment Description 

%%EOF indication of the end of the file 

%%IncludeProcset: name version revision instruction to include the specified 
procedure set 

End Of Flle comment 

The End Of File comment indicates that an end-of-file message is being inserted into the print 
stream. Every PostScript job must begin with the Job Identification comment and end with an End 
Of File comment. 

Syntax: %%EOF 

Example: % %EOF 

Include Procedure Set comment 

The Include Procedure Set comment directs the spooler to insert the specified procedure set into 
the header of the document file. The procedure set typically represents a subset of the document 
prologue; the prologue can be broken into several subpackages known as procedure sets. The 
procedure sets can be used to define groups of routines for different imaging requirements. For 
example, a procedure set may include the code for generating specialized fonts. 

Resource comments 14-33 



Each procedure set is identified by the following three arguments: 

Argument 

name 

version 

revision 

Description 

a disk filename or the PostScript name by which the procedure set is identified 

a sequential number that uniquely identifies a procedure set from earlier or later 
versions with the same name 

a sequential number that uniquely identifies different releases within the same 
version of a procedure set 

Syntax: %%Incl udeProcSet : name version revision 

Example: %%IncludeProcSet : "exampleProcSet " 1 0 

Query comments 

This section describes the Query comments used in a PostScript file. Query comments are 
incorporated in PostScript code that queries PostScript printers so that a spooler/server or other 
document manager can respond to the queries without having to interpret the PostScript code. 
Any document manager that spools to a PostScript printer must be able to interpret and respond to 
these query comments. 

A query is any PostScript code that generates a response that is sent back to the originating 
computer. The originating computer uses the information in the response for decision-making. 
Query comments always occur in pairs that contain a beginning query and an ending query, with 
the keywords indicating the query type. The query pairs enclose PostScript code. 

In general, queries are used to determine the current state or characteristics of the printer, 
including the availability of the following resources: 

• prologues 

• files 

• fon ts 

• virtual memory 

• printer-specific features and enhancements 

14-34 C H A PTE R 14 Print Spooling Architecture 



Conventions for using query comments 

Any print file that embeds PostScript queries should follow the query conventions in order to be 
spooled successfully. "Structure Comments," earlier in this chapter, describes general guidelines for 
using PostScript comment conventions. This section summarizes some guidelines that apply 
specifically to using query comments that conform to version 2.0 of the Adobe PostScript 
Document Structuring Conventions. 

Every query comment begins with %%?Begin followed by a text string of up to 256 
characters and an end-of-line indicator. The end-of-line symbol is typically either a linefeed or a 
carriage return. 

The end of a query is delimited (minimally) by the sequence %%?End followed by one or 
more keywords, an optional colon (:), and the default response to the query. 

All End Query comments must include a field for a default value. The print spooler should 
return the default value when it cannot interpret or does not support the query. The value of the 
default is entirely application-dependent. The application can use the default field to determine 
specific information about the spooling environment and to take appropriate action. 

A PostScript query should be sent as a separate print job in order to guarantee that it will be 
fully spoolable; that is, query comments are not valid if they are embedded in either a standard print 
job or an exit server job. Query jobs must begin with the Job Identification comment 
%! PS-Adobe- 2. 0 Query and end with %%EOF. A query job contains only query comments 
and need not contain any other standard structuring conventions. A query job can include more 
than one query. However, if query comments are embedded within the body of a standard print 
job, there is no guarantee that the spooler will handle the print job properly. 

Spooler responsibilities 

A print spooler should be able to extract query information from any print file that begins with 
%! PS-Adobe- 2. 0 Query. The spooler should fully parse a query job file until it reaches the 
EOF indicator. 

Document spoolers must perform the following tasks in response to query conventions: 

• recognize queries 

• remove queries from the print stream 

• send back some reply to the originating computer 

Query comments 14-35 



If a spooler cannot interpret a query, the spooler should return the value provided as the default for 
the End Query comment. A spooler can minimally recognize a query by the sequence %%?Begin 

and can respond with the default. However, a spooler should make an attempt to recognize the full 
query keyword if possible and should respond to any query that follows the structuring 
conventions. 

Apple's LaserShare print spooler responds to all query comments. In some cases, however, 
LaserShare simply returns the default, indicating that it cannot provide the information requested. 
These cases are noted in the comment definitions that follow. 

Definitions 

This section contains the query comments defined by version 2.0 of the Adobe PostScript 
Document Structuring Conventions. The query comments are listed alphabetically in pairs of 
beginning and ending comments. The descriptions include syntax and an example. Query comments 
are summarized as follows: 

Comment 

%%?BeginFeatureQuery featuretype option 

%%?EndFeatureQuery: default 

%%?BeginFileQuery: filename 

%%?EndFileQuery: default 

%%?BeginFontListQuery 

%%?EndFontListQuery: default 

%%?BeginFontQuery: fontname 

%%?EndFontQuery: default 

%%?BeginPrinterQuery 

%%?EndPrinterQuery: default 

%%?BeginProcSetQuery: name version revision 

%%?EndProcSetQuery: default 

%%?BeginQuery: identifier 

%%?EndQuery: default 

%%?BeginVMStatusQuery 

%%?EndVMStatusQuery: default 

14-36 C H A P T E R 14 Print Spooling Architecture 

Query 
state of printer-specific feature 

availability of specified me 

list of available fonts 

availability of specified fonts 

printer's product name, 
version number, and revision numbeJ 

status of procedure set 

variable based on identifier 

state of PostScript memory 



Feature Query comments 

The Feature Query comments obtain information about the state of a printer-specific feature, as 
defmed by the printer's Adobe Printer Description (APD) file. LaserShare does not specifically 
support this query and responds to it with the default. 

Syntax: %%?BeginFeatureQuery: featuretype option 
%%?EndFeatureQuery: default 

Examples: %%?BeginFeatureQuery: @Input Slot manual feed 
statusdict /manualfeed known 

statusdict /manualfeed get 

(unknown) 
if else 
flush 

%%?EndFeatureQuery: unknown 

Flle Query comments 

The File Query comments are used to determine whether the specified ftle is available to the printer. 
The standard response consists of a line that contains either 0 or 1, where 0 indicates that the file is 
not present and 1 indicates that it is present. 

When a file system is not available to the spooler, the File Query comments are meaningless to 
the spooler, which responds to them with the default. Since LaserShare does not support a ftle 
system, LaserShare always responds to these comments with the default. 

Syntax: %%?BeginFileQuery: filename 
%%?EndFileQuery: default 

Examples: %%?BeginFileQuery: "myFile" 
myDict /myFile known = flush 

%%?EndFileQuery: false 

Query comments 14-37 



Font List Query comments 

The Font List Query comments return a list of all fonts available to the printer. The standard 
response consists of a sequence of lines, each of which contains the name of a font. A newline 
character should terminate each line; an asterisk (*) should terminate the list itself. 

LaserShare responds to this query with a list of the fonts available to the printer that it serves. 

Syntax: %%?BeginFontListQuery 
%%?EndFontListQuery: default 

Exampl~: %%?BeginFontListQuery 
FontDirectory {pop 
/* = flush 

%%?EndFontListQuery 

Font Query comments 

flush} forall 

The Font Query comments are used to determine whether the specified font is available to the 
printer. The font name used with these comments should be an appropriate PostScript name. The 
standard response consists of a line that contains either 0 or 1, where 0 indicates that the font is not 
present and 1 indicates that it is present. LaserShare responds to this query with either 0 or 1, 
indicating whether the font is available to the printer. 

Syntax: %%?BeginFontQuery: fontname 
%%?EndFontQuery: default 

Exampl~: %%?BeginFontQuery: Times 
mark 
/Times 

counttomark 0 gt { 
FontDirectory exch known {1} {O}ifelse 

} { 

pop exit 
} ifelse 

} bind loop 
%%?EndFontQuery: unknown 

14-38 C H A P T E R 14 Print Spooling Architecture 

flush 



Global Query comments 

The Global Query comments provide a general-purpose query that can serve any function not 
provided by one of the other query comments. For example, this query can be used to detennine 
whether the remote device is a spooler or a printer. 

Syntax: %%?BeginQuery: identifier 
%%?EndQuery: default 

EXampl~: %%?BeginQuery: rUaSpooler 
false == flush 

%%?EndQuery: true 

Printer Query comments 

The Printer Query comments request status information about the printer, such as the printer's 
product name, version number, and revision number. The standard response consists of the 
printer's product name string, version string, and revision string, each of which should be followed 
by a newline character. The strings should match the information in the printer's APD flle. 

LaserShare responds to this query with information about the printer that it serves. 

Syntax: %%?BeginPrinterQuery 
%%?EndPrinterQuery: default 

Examples: %%?BeginPrinterQuery 
statusdict begin 
revision == 
version 
product 
end 
flush 

%%?EndPrinterQuery: unknown 

Query comments 14-39 



Procedure Set Query comments 

The Procedure Set comments check whether the specified procedure set is available to the printer. 
Each procedure set is identified by the following three arguments: 

Argument Description 

name a disk filename or the PostScript name by which the procedure set is identified 

version a sequential number that uniquely identifies a procedure set from earlier or later 
versions with the same name 

revision a sequential number that uniquely identifies different releases within the same 
version of a procedure set 

The standard response to this query consists of a line that contains one of the following values: 

Value 

0 

1 

2 

Description 

indicates that the procedure set is missing 

indicates that the procedure set is present and usable 

indicates that the procedure set is present, but that the version does not match the 
version specified in the query 

LaserShare responds to the Procedure Set Query comments with one of the standard responses. 

Syntax: %%?BeginProcSetQuery: name version revision 
%%?EndProcSetQuery: default 

Examples: %%?BeginProcSetQuery: "privateDict" 25 0 
userdict /privateDict known 

{privateDict /theVersion get 25 eq 
{ 1} 

{2} ifelse} 
{0} ifelse 

flush 
%%?EndProcSetQuery: unknown 

Virtual Memory Status Query comments 

The Virtual Memory Status Query comments check the state of the PostScript printer's virtual 
memory. The standard response consists of a line that contains the results of the PostScript 
vmstatus operator (refer to the Adobe PostScript lAnguage Reference Manual, Vmion 2.0, for a 
detailed description of this operator). 

14-40 C H A P T E R 14 Print Spooling Architecture 



Because LaserShare does nor specifically support this query, it responds with the default 

Syntax: %%?BeginVMStatusQuery 

%%?EndVMStatusQuery: default 

Examples: %%?BeginVMStatusQuery 

vmstatus = = = flush 

%%?EndVMStatusQuery : unknown 

Sample print streams 

The following code is an example of the way that structure comments appear in the print stream 
for a standard PostScript job. 

%!PS - Adobe - 2.0 

%%Title: ps test macwrite 

%%Creator: MacWrite 

%%CreationDate: Monday, July 13, 1987 

%%For: Smith, John 

%%BeginProcSet: "exampleProcSet " 1 0 

/aSimpleProc 

{newpath 200 350 150 0 360 arc closepath fill } 

def 

%%EndProcSet 

md begin 

T T - 31 -30 76 1 582 100 72 72 1 F F F F T T psu 

(Smith, John; document: ps test macwrite) jn 

0 mf 

oct 

%%Page: ? 1 

op 

0 -42 xl 

1 1 pen 

0 0 gm 

(nc 0 0 730 510 6 rc)kp 

13 10 gm 

(nc 0 5 730 480 6 rc) kp 

bu fc 

(continued) • 

Sample print streams 14-41 



{}mark T /Helvetica-Bold I ! ___ Helvetica-Bold 0 rf 

bn 

1 setTxMode 

1 fs 12.47991 fz 

bu fc 

2 F I ! ___ Helvetica-Bold fnt 

bn 

(this is to test PostScript) show 

F T cp 

%%Trailer 

cd 

end 

%%EOF 

The following code is an example of the way that comments appear in a print stream for a 
PostScript query job. 

%!PS-Adobe-2.0 Query 

%%Title: Query job to determine font status 

%%?BeginFontQuery: Palatino-Roman Palatino-Bold 
mark 

/Palatino-Roman 

/Palatino-Bold 

counttomark 0 gt { 

FontDirectory exch known { 1 } { 0 } ifelse = flush 
}{ 

pop exit 

} ifelse 

} bind loop 

%%?EndFontQuery: 0 0 

% send an EOF, depending on protocol 
%%EOF 

14-42 C H A P T E R 14 Print Spooling Architecture 



The following code is an example of the way that comments appear in a print stream for a 
PostScript exit seiVer job. Exit server jobs are registered outside of the normal server loop. 

%!PS-Adobe-2.0 Exitserver 
%%Title: ps test write 

%%Creator: Write 

%%CreationDate: Monday, July 13, 1987 

%%BeginExitServer: 000000 

serverdict begin 

000000 

exit server 
%%EndExitServer 

%%BeginProcSet: "exampleProcSet" 1 0 
/aSimplePrdc 
{newpath 200 350 150 0 360 arc closepath fill} 

def 
%%EndProcSet 

%%Trailer 

%%EOF 

Sample print streams 14-43 



Appendixes 



Appendix A LocalTalk Hardware Specifications 

CON TE NTS 

LocalTalk electrical characteristics I A-2 
Bit encoding and decoding I A-2 
Signal transmission and reception I A-3 
Carrier sense I A-3 

Electrical/mechanical specification I A-3 
Connection module I A-4 
LocalTalk connector I A-5 
Cable connection I A-5 

Transformer specifications A-5 
Environmental conditions I A-7 
Mechanical strength and workmanship I A-8 

• 

A-1 



LocalTalk electrical characteristics 

LocalTalk uses Synchronous Data Link Control (SDLC) frame format and a frequency 
modulation technique called FM-0. (FM-0 is a bit-encoding technique that provides self-clocking.) 
Balanced signaling is achieved using the Electronics Industries Association (EIA) standard RS-422 
hardware drivers and receivers in each of the attached devices. The transformer provides ground 
isolation as well as protection from static discharge. Since devices are passively connected to the 
trUnk cable by means of a drop cable, an individual device may fail without disturbing 
communication along the rest of the data link's trunk cable. Devices can be added and removed 
from the link with only minor disruption of service. 

The physical layer perfom1s the following functions: 

• bit encoding and decoding 

• signal transmission and reception 

• carrier sense 

Bit encoding and decoding 

Bits are encoded using a self-clocking technique known as FM-0 (also called biphase space). In FM-0, 
each bit cell (nominally, 4.34 microseconds) contains a transition at each end that provides timing 
information known as one bit-time. Zeros are encoded by adding transition at midcell, as shown in 
Figure A-1. 

• Figure A-1 FM-0 encoding 

~-3 1 
microseconds 

0 

A-2 APPEND I X A LocalTalk Hardware Specifications 

0 



Signal transmission and reception 

The use of the EIA RS-422 signaling standard for transmission and reception over Loca!Talk provides 
significantly higher data rates over longer distances than that of the EIA RS-232-C standard. 
Loca!Talk uses differential, balanced voltage signaling at 230.4 Kbits per second over a maximum 
distance of 300 meters. The balanced configuration provides bener isolation from ground noise 
currents and is not susceptible to fluctuating voltage potentials between system grounds or 
common-mode electromagnetic interference (EMI). 

Carrier sense 

The physical layer provides an indication to the LocalTalk Link Access Protocol (LLAP) when activity 
is sensed on the cable. The following two indications are provided: 

• SDLC frame in progress 

• missing clock detected 

In the preferred hardware implementation of LocaiTalk, a Zilog 8530 Serial Communications 
Controller (SCC) is used. This semiconductor device provides both of the above carrier-sensing 
indications. The sec chip provides a software-readable hunt bit that is set (equal to 1) while the 
hardware is searching for the start of the next SDLC frame. When this bit is cleared (equal to 0), the 
hardware is in the middle of an SDLC frame. 

+ Note: A frame cannot be detected until a complete flag has been transmitted on the line and 
recognized by the hardware. On the other hand, the synchronization pulse sent before 
frames and the resulting missing clock detected by receivers provide a more immediate 
indication of an ongoing transmission (see Chapter 1, "LocalTalk Link Access Protocol"). 
Missing clock indicates the detection and then the absence of a clocking signal on the line. 

Electrical/ mechanical specification 

The following sections provide a detailed electrical/mechanical specification of LocalTalk, as well as 
cable and connector characteristics (these specifications correspond to Apple document number 
062-0190-B). 

Electrical/mechanical specification A-3 



Connection module 

AppleTalk devices are connected to LocalTalk by a connection module that contains a transformer, a 
DB-9 or DIN-8 connector at the end of a 460-millimeter cable, and two 3-pin miniature DIN 
connectors, as shown in Figure A-2. 

• Figure A-2 LocalTalk connection module 

Connection module 

DB-9 Dl\-8 
pins pins R3 • IK 

RXD+ 8 8 

TXD+ 6 

RXD- 9 s 
TXD- 5 3 

RS • IK 

Cl = O. I IJfd 

II 

Dl\-8 

8 7 6 

w. 
2 I 

3-pin miniature Dl\ 
connectors with switch 

6 
Ql andj2) 

013-9 

5 4 3 2 I 

9 8 7 6 

Pins 
I 

Each 3-pin connector has a coupled switch. If both connectors are used, the switches are open; 
if one of the connectors is not used, a 100-ohm termination resistor (R2) is connected across the line. 
The use of the connection module allows devices to be removed from the system by disconnecting 
them from the module without disturbing the operation of the bus. Resistors R3 and R4 increase 
the noise immunity of the receivers, while R5 and Cl isolate the frame grounds of devices and 
prevent ground-loop currents. The resistor (Rl) provides static drain for the cable shield to ground. 

A-4 A P P E N D I X A LocalTalk Hardware Specifications 



LocalTalk connector 

The LocalTalk connector is a miniature 3-pin connector similar to the Hosiden connector (number 
TCP8030-0l-010). The connector pin assignment is shown in Figure A-3. 

• Figure A-3 Connector pin assignment (looking into the connector) 

Cable connection 

The interconnecting cable is wired one-to-one to the LocalTalk connector, as shown in Figure A-4. 

• Figure A-4 lnterconnecting cable connection 

Transformer specifications 
The transformer is used in the LocalTalk connection module to provide isolation between the 
LocalTalk cable and the devices that are connected to the cable. 

The transformer is a 1:1 turns ratio transformer with tight coupling between primary and 
secondary and with electrostatic shielding to give excellent common node isolation, as shown in 
Figure A-5. 

Transformer specifications A-5 



• Figure A-S Transformer specification 

Cut tab 
I 106 2 ° 5 

3 4 

;_....e-~(}) P.C. panem 

__L-\ 0.4ll~:~--1---t-
~ 0.470" 

0.280" 0 0 0.140" ~ 
-- 0 0 __:.:;~t ~~-

Part/Condition 

core material 

bobbin 

retaining clip 

magnetizing inductance 

leakage inductance 

capacitance 

t Diameter of terminal 
is 0.046" (6 places). 

Orientation hole diameter 
is 0.136" (1 place). 

Specification 

Siemens B65651-KOOO-R030 (or equivalent) 

Siemens B65652-PC1,L (or equivalent) 

Siemens B65653-T (or equivalent) 

20 mH minimum 

15 J,1H maximum 

5 pF maximum (primary or secondary with electrostatic shield and 
core guarded) 

The primary shielding is wound as two windings of #32 A WG wire in a series with one wound 
below the secondary and one above it, as shown in Figure A-6. The secondary shielding is a single 
continuous winding of #32 wire. 

A-6 A P P E N D I X A LocalTalk Hardware Sp~cifications 



• Figure A-6 Schematic and build detail 

All wire 1132 A WG. 
Turns counts are typical and may be 
adjusted for different core materials. 

Shield-

=
-W3 

-W2 
Shield-

-Wl 

Environmental conditions 

Cut tab 
I 106 2 ° 5 

3 4 

Top view 

The transformer is designed to operate properly and to meet its specifications under the following 
environmental conditions: 

Condition 

operating temperature 

storage temperature 

relative humidity 

altitude 

Range 

0°to70°C 

-40°to70°C 

5to95% 

0 to 4572 meters 

The transformer must also meet the Apple Computer shock and vibration requirements while 
mounted on a· printed circuit board and tested to Apple specification number 062-0086. 

Transformer specifications A· 7 



Mechanical strength and workmanship 

The transformer winding assembly, pins, mounting plate, core, and clamp must be securely 
mounted and rigid with respect to each other. 

The pins must be easily solderable; solderability must meet the EIA RS-186-9E standard. All 
components must be free of undue mechanical stresses. 

A-8 A P P E N D I X A LocalTalk Hardware Specifications 



Appendix B LLAP Access Control Algorithms 

CO NTE NTS 

Assumptions I B-2 

Global constants, types, and variables I B-2 

Hardware interface declarations I B-4 

Interface procedures and functions I B-5 

InitializellAP procedure I B-6 

AcquireAdd.ress procedure I B-7 

Transm.itPacket function I B-8 

Transm.itLinkMgmt function I B-8 

TransmitFrame procedure I B-14 

ReceivePacket procedure I B-15 

ReceivelinkMgmt function I B-15 

ReceiveFrame function I B-17 

Miscellaneous functions I B-19 

SCC implementation I B-20 

CRC-CCITT calculation I B-22 

• 

B-1 



The following procedural model is written in a Pascal-like language (pseudo-code) and provided as a 
specification of the LocalTalk Link Access Protocol (LLAP). Any particular implementation of LLAP 
must follow this specification. 

An equivalent specification is to be found in the following U.S. patents: 

• G. Sidhu, A. Oppenheimer, L. Kenyon, R. Hochsprung: "Local Area Network with Self-Assigned 
Address Method," United States Patent No. 4,689,786, August 25, 1987. 

• R. Hochsprung, L. Kenyon, A. Oppenheimer, G. Sidhu: "Local Area Network with Carrier Sense 
Collision Avoidance," United States Patent No. 4,661,902, April28, 1987. 

Assumptions 
The model assumes that the program executes fast enough so as not to introduce any execution 
delay into the timing of events. Where LLAP specifies a timing delay, it is assumed to be performed 
by means of references to a global real function, RealTime, which returns the current time in 
microseconds. All timing constraints are specified as real constants. 

The model assumes sequential, single-process execution of the code, especially the 
TransmitPacket function and the ReceivePacket procedure (and the procedures they call). 

In a typical implementation, packet reception is triggered by means of a hardware interrupt. 
The interrupt routine then executes the ReceiveLinkMgmt function. The interrupt routine must 
provide a mechanism for saving valid data packets and for informing higher-level protocols of this 
event. However, such details are implementation-dependent and are outside the scope of Inside 
AppleTalk. 

The model assumes that a transmitter continuously listens to the link while waiting for its 
access to the line. 

Global constants, types, and variables 
The following global constants, types, and variables are used throughout the model. 

B-2 APPEND I X B LLAP Access Control Algorithms 



CONST 

TYPE 

minFrameSize = 3; 
maxFrameSize = 605; 
maxDataSize = 600; 
bitTime = 4.34; 
byteTime = 39.0; 
miniDGtime = 400.0; 
IDGslottime = 100.0; 
maxiFGtime = 200.0; 
maxDefers :;;;: 32; 
maxCollsns = 32; 
lapENQ = $81; 
lapACK = $82; 
lapRTS = $84; 
lapCTS = $85; 
hdlcFLAG :;;;: $7E; 
wksTries = 20; 

smallest (LAP header only) frame } 
size of largest LAP frame including FCS 
size of largest (encapsulated) LLAP data field 
bit time (J.I.Sec) } 
worst case single byte time (J.I.Sec) } 
minimum interdialog gap (J.I.Sec) } 
slot time of transmit backoff algorithm (J.I.Sec) } 
maximum interframe gap (~sec) } 
maximum defers for a single packet } 
maximum collisions for a single packet 
LAP type field value of ENQuiry frame } 

ACKnowledgment frame } 
... RequestToSend frame} 
•.• ClearToSend frame} 

value of an HDLC FLAG } 
Number of ENQ sets for a workstation to try 

{ global result types from LAP functions } 
TransmitStatus = (transmitOK, excessDefers, excessCollsns, dupAddress); 
ReceiveStatus = (receiveOK, Receiving, nullReceive, frameError); 
FrameStatus = (noFrame, lapDATAframe, lapENQframe, lapACKframe, 

lapRTSframe, lapCTSframe, badframeCRC, badframeSize, 
badframeType, overrunError, underrunError); 

{ Data link types and structures } 
bit = o •. 1; 
bitVector =packed array [0 •. 7] of bit; 
octet= $00 •• $FF; 
anAddress = octet; 
aLAPtype = octet; 
aDataField =PACKED ARRAY [1 •. maxDataSize] of octet; 

Basic structure of an LLAP frame, not including FLAGs, FCS 
frameinterpretation = (raw, structured); 
aFrame = PACKED RECORD 
CASE frameinterpretation OF 

raw: rawData : PACKED ARRAY [1 •• maxFrameSize] of octet; 
structured: 

END; 

dstAddr anAddress; 
srcAddr anAddress; 
lapType aLAPtype; 
dataField : a DataField) 

(continued) • 

Global constants, types, and variables B-3 



VAA 

MyAddress : octet; 
Backoff : INTEGER; 
fAdrValid, 
FAdrinUse, 

set during InitializeLAP } 
current backoff range } 
MyAddress has been validated} 
Another node has same MyAddress 
RTS has been sent , CTS is valid fCTSexpected : BOOLEAN; 

deferCount, collsnCount : INTEGER; optional, for statistics only } 
deferHistory, collsnHistory : bitVector; 
outgoingLength, incomingLength INTEGER; 
outgoingPacket, incomingPacket : aFrame ; 

Hardware interface declarations 

The following declarations refer to hardware-specific interfaces that are assumed to be available 
I 

to the LLAP procedures. The functions are typically bits and/or bytes contained in the relevant 
hardware interface chip(s). Similarly, the procedures are expected to be represented in actual 
hardware by means of control bits. 

A brief description of the assumed attributes of each of these declarations follows: 

Declaration 

CarrierSense 

RcvDataAvail 

rxDATA 

EndOfFrame 

CRCok 

OverRun 

MissingClock 

setAddress 

enableTxDrivers 
disableTxDrivers 

enableTx 
disableTx 

' 
Description 

indicates that the hardware is sensing a frame on the link 

indicates that a data byte is available 

identifies the next data byte available (when indicated by RcvDataAvail) 

indicates that a valid closing flag has been detected 

indicates that the received frame check sequence (FCS) is correct (when 
EndOfFrame) 

indicates that the code did not keep up with data reception 

indicates that a missing clock has been detected 

sets the hardware to receive frames directed to MyAddress 

control the operation of the RS-422 drivers 

control the operation of the data transmitter 

txFLAG causes the transmission of a flag 

B-4 A P P E N D I X B LLAP Access Control Algorithms 



Description Declaration 

txDATA 

txFCS 

causes the transmission of a data byte 

causes the transmission of the FCS 

txONEs 

resetRx 

causes 12-18 one-bits (l's) to be transmined 

control the receiver 
enableRx 
disableRx 

resetMissingClock causes the MissingClock indication to be cleared 

The hardware interface functions/procedures are as follows: 

FUNCTION CarrierSense : BOOLEAN; 
FUNCTION RxDataAvail : BOOLEAN; 
FUNCTION rxDATA : octet; 
FUNCTION EndOfFrame : BOOLEAN; 
FUNCTION CRCok : BOOLEAN; 
FUNCTION OverRun : BOOLEAN; 
FUNCTION MissingClock : BOOLEAN; 
PROCEDURE setAddress (addr : octet); 
PROCEDURE enableTxDrive r s ; 
PROCEDURE disableTxDrivers; 
PROCEDURE enableTx; 
PROCEDURE txFLAG; 
PROCEDURE txDATA (data octet); 
PROCEDURE txFCS; 
PROCEDURE txONEs; 
PROCEDURE disableTx; 
PROCEDURE resetRx; 
PROCEDURE enableRx; 
PROCEDURE disabl eRx; 
PROCEDURE resetMissingClock ; 

EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL ; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL ; 

Interface procedures and functions 

The LLAP model's interface to the next higher layer (its client) is specified in terms of the following 
three calls: 

PROCEDURE InitializeLLAP (hint octet; server boolean) 

Interface procedures and functions B-5 



This call initializes LLAP; it is expected to be called exacdy once. The hint parameter is a 
suggested starting value for the node's LocalTalk physical-link address; a value of 0 indicates that 
LLAP should generate a starting value. Upon return from the call, the station's actual address is 
available in the global variable My Address. If server is true, then the internal procedure 
AcquireAddress will spend extra time to determine if another node is using the selected node 
address. 

FUNCTION TransmitPacket (dstParam : anAddress; typeParam : aLAPtype; 
dataField : aDataField; dataLength : INTEGER) : TransmitStatus; 

This call is provided to transmit a packet. The internal function TransmitLinkMgmt performs 
the transmission link-access algorithms. 

Procedure ReceivePacket (var dstParam : anAddress; 
var srcParam : anAddress; var typeParam : aLAPtype ; 
var dataField: aDataField; var dataLength : integer); 

This call is provided to receive a packet. The internal function ReceiveLinkMgmt implements the 
reception link-access algorithms. 

InitializeLLAP procedure 

The InitializeLLAP procedure is called to reset LLAP's global variables to known states; it calls 
AcquireAddress to initialize My Address. The following is a procedural model for the InitializeLLAP 
procedure: 

PROCEDURE InitializeLLAP (hint octet; server BOOLEAN); 

VAR 
i INTEGER; 

BEGIN 
Backoff := 0; 
( initialize history data for Backoff calculations ) 
FOR i : = 0 TO 7 DO BEGIN 

END; 

deferHistory[i) : = 0; 
collsnHistory[i) := 0; 

deferCount := 0; collsnCount : = 0; 
AcquireAddress (hint , server) ; 

END; { InitializeLAP } 

{ optional ) 

B-6 A P P E N D I X B LLAP Access Control Algorithms 



AcquireAddress procedure 
The AcquireAddress procedure specifies the dynamic node ID assignment algorithm. 
AcquireAddress creates and sends a control packet (of type lapENQ). When no node responds after 
repeated attempts, the current value of My Address is assumed to be safe for use by this node; the 
state of fAdrValid reflects this fact. If the global fAdrlnUse ever becomes true after a call to 
AcquireAddress, another node that is using the same MyAddress has been detected. The following 
is a procedural model for the AcquireAddress procedure: 

PROCEDURE AcquireAddress (hint : octet ; server BOOLEAN); 

VAR 

maxTrys, trys : INTEGER; 
ENQframe : aFrame; 

BEGIN 
IF hint > 0 
THEN myAddress : = hint 
ELSE IF server 

THEN MyAddress := Random (127) + 128 
ELSE MyAddress := Random (127) + 1; 

setAddress (MyAddress); 
fAdrValid := FALSE ; 
IF server 
THEN maxTrys := wksTries * 6 
ELSE maxTrys := wksTries; 

{ servers try 6 times as much as workstations I 

trys := 0; fAdrinUse := FALSE; 

{ the main loop of AcquireAddress -- repeatedly check for response to ENQ 

WHILE trys < maxTrys DO BEGIN 
IF (TransmitPacket (MyAddress, 1apENQ, ENQframe.dataField,O) 

= transmitOK) OR fAdrinUse 
THEN BEGIN 

IF server 
THEN MyAddress := Random (127) + 128 
ELSE MyAddress := Random (127) + 1; 
setAddress (MyAddress); 
trys := 0; 

END { IF I 
ELSE trys := trys + 1; 

END; { WHILE I 

fAdrValid := TRUE; 
END; { AcquireAddress 

AcquireAddress procedure B-7 



TransmitPacket function 

The TransmitPacket function is called by the LLAP client to send a data packet. After constructing 
(encapsulating) the caller's dataParam, the function calls upon TransmitLinkMgmt to perform the 
actual link access. A procedural model for the TransmitPacket function follows: 

FUNCTION TransmitPacket (dstParam : anAddress; typeParam : aLAPtype; 
dataParam : aDataField; dataLength : INTEGER) : TransmitStatus ; 

BEGIN 
IF fAdrinUse 
THEN TransmitPacket := dupAddress 
ELSE BEGIN 

{ copy interface data into frame for TransmitLinkMgmt } 
WITH outgoingPkt DO BEGIN 

dstAddr := dstParam; 
srcAddr := MyAddress; 
lapType : = typeParam; 
dataField ·= dataParam; 

END; { WITH } 

outgoingLength := dataLength + 3; 
TransmitPacket .- TransmitLinkMgmt; 

END; { ELSE } 
END; { TransmitPacket } 

TransmitLinkMgmt function 

The TransmitLinkMgmt function implements the Carrier Sense Multiple Access with Collision 
Avoidance (CSMA/CA) algorithm. LLAP attempts to minimize collisions by requiring transmitters to 
wait for the duration of the interdialog gap (IDG) plus a random period of time before sending their 
request-to-send (RTS) packets. Any transmitter that detects that another transmission is in 
progress while it is waiting must defer. 

B-8 A P P E N D I X B LLAP Access Control Algorithms 



In order to minimize delays under light loading yet still minimize the probability of collisions 
under moderate to heavy loading, the random delay or backoff is picked in a range that is 
constantly adjusted based on the recently observed history of the node's attempts to access the 
link. Two history bytes or vectors (called deferHistory and collsnHistory in tl1e pseudo-code below) 
are used to keep track of the number of deferrals and presumed collisions in the last eight link
access attempts. These 2 bytes are used to adjust a global backoff mask that can take on 
particular values between $0 and $F (specifically, binary 0, 01,011, 0111, and 01111). These values 
determine the range of the random period to be picked. 

The global backoff mask is adjusted at the beginning of a particular request to transmit a data 
packet, and it is used only the first time a node tries to transmit that data packet. Additionally, a 
local backoff mask is used during the retry attempts of a given data packet. The use of the local 
backoff mask has the effect of spreading out attempts to a nonlistening node, thus increasing the 
node's chances of receiving the packet. 

The global backoff mask is adjusted as follows: 

1. The mask starts with value 0. 

2 If the node had to back off more than twice in the last eight attempts, the mask is extended 
by 1 bit up to a maximum of 4 bits (logical shift left and set the low-order bit). The backoff 
history byte is then set to all Os so that further adjustments are inhibited until more history 
data has accumulated. 

3. Else, if the node had to defer less than twice in the last eight attempts, the mask is reduced by 
1 bit (logical shift right). The defer history byte is set to all Is so that further adjustments are 
inhibited until more history data has accumulated. 

4. Else, if neither of these apply, the mask is left unchanged. 

Due to collisions and deferrals, LLAP may have to make many attempts to send a packet. The 
following sequence of operations is performed before making the first attempt: 

1. The global backoff mask is adjusted as specified above. 

2 The 2 history bytes are shifted left 1 bit, and the low-order bit of each is set to 0. 

3. The global backoff mask is copied into a local backoff mask. 

During each attempt to send a directed packet, the following sequence of operations is performed: 

1. If the line is busy, the node waits until the end of the dialog. The low-order bit of the deferral 
history byte and the low-order bit of the local backoff mask are set to 1. 

2 If the line is not busy, the node waits 400 microseconds. If the line becomes busy during this 
time, the node defers as previously described in step 1. 

TransmitLinkMgmt function B-9 



3. The random wait period is generated: A random number is picked and masked by (ANDed with) 
the local backoff mask. The node waits for 100 microseconds (the IDG slot time) multiplied by 
this random number. If the line becomes busy during this time, the node defers. 

4. The node sends a lapRTS. If a lapCfS is received within the maximum interframe gap (IFG) or if 
the packet is to be broadcast, the data is sent. Otherwise, a collision is presumed; the low-order 
bit of the collision history byte is set to 1; the local backoff mask is shifted left 1 bit, and its 
low-order bit is set. The node then tries again. 

5. If, during an attempt to send a packet, 32 collisions occur or the node has to defer 32 times, the 
attempt is aborted, and an error is returned to the LLAP client. 

A procedural model for the TransmitLinkMgmt function follows. 

+ Note: Although the section above refers to the use of local and global backoff masks, the 
pseudo-code below achieves the same result by treating the local and global backoff 
variables as numbers, not masks, in the range 0 to 16. In either case, Backoff represents an 
upper limit of the random number to be picked. 

FUNCTION TransmitLinkMgmt : TransmitStatus; 

VAR 

LclBackOff, i : INTEGER; 
fBroadcast, fENQ : BOOLEAN; 
xmt timer : REAL; 
rcvdframe : FrameStatus; 
RTSfrarne : aFrame; 

BEGIN 

WITH RTSframe DO BEGIN 

END; 

dstAddr := outgoingPacket.dstAddr; 
srcAddr := MyAddress; 
lapType := lapRTS 

B-10 APPEND I X B LLAP Access Control Algorithms 



fBroadcast :"" (outgoingPacket.dstAddr"" $FF); 
fENQ := (outgoingPacket.lapType"" lapENQ); 

{ Adjust Backoff, based upon recent history 
{ Increase Backoff if we've seen a lot of collisions 
IF bitCount (collsnHistory) > 2 
THEN BEGIN 

Backoff :=min (max (Backoff * 2, 2), 16); 
FOR i := 0 TO 7 DO collsnHistory[i] := 0; 

END { IF } 

{ Decrease Backoff if we haven't had to defer very much } 
ELSE IF bitCount (deferHistory) < 2 

THEN BEGIN 
Backoff :"" Backoff DIV 2; 

FOR i := 0 TO 7 DO deferHistory[i] :"" 1 
END; { ELSE IF } 

Shift history data } 
FOR i := 7 DOWNTO 1 DO BEGIN 

collsnHistory[i] := collsnHistory[i-1]; 
deferHistory[i] ·"" deferHistory[i-1]; 

END; { FOR } 
collsnHistory[O] := 0; deferHistory[O] := 0; 

{ Initialize main loop 
deferTries :"" 0; 
LclBackoff := Backoff; 

{ Begin main loop } 
REPEAT 

collsnTries := 0; 
transmitdone := FALSE; 

{ Wait for minimum Inter-Dialog Gap time } 
REPEAT 

{ Wait for any packet in progress to pass } 
IF CarrierSense 
THEN BEGIN 

{ We're not really deferring, just waiting, 
but ensure minimum backoff anyway } 
LclBackoff :=max (LclBackoff, 2); 
deferHistory[O] := 1; 

(continued) • 

TransmitLinkMgmt function B-11 



{ Perform watchdog reset of Rx for "stuck" CarrierSense 
xmttimer := RealTime + 1.5 * maxFrameSize * byteTime; 
REPEAT 
UNTIL (NOT CarrierSense) OR (RealTime> xmttimer); 
IF CarrierSense THEN ResetRx;{ something's wrong, clear it } 

END; { IF } 

We could ResetMissingClock anytime, as long as it's not within IDG 
slottime of sending our packet } 
ResetMissingClock; 

{ Wait for minimum IDG after packet (or idle line) } 
xmttimer := RealTime + miniDGtime; 
REPEAT 
UNTIL (RealTime > xmttimer) OR CarrierSense; 

UNTIL NOT CarrierSense; 

{ Wait our additional backoff time, deferring to others } 
{ (LclBackoff - 1) is the upper bound of the random number we pick 
xmttimer : = RealTime + Random (LclBackoff) * IDGslottime; 
REPEAT 
UNTIL (RealTime > xmttimer) OR CarrierSense; 

IF CarrierSense OR MissingClock 
THEN BEGIN { defer } 

DeferCount := DeferCount + 1; { optional 
LclBackoff :=max (LclBackoff, 2); 
deferHistory[O] := 1; 
IF deferTries < maxDefers THEN deferTries := deferTries + 1 

ELSE BEGIN 
TransmitLinkMgmt := excessDefers; 
transmitdone := TRUE; 

END { ELSE 
END { IF } 

ELSE BEGIN 
IF fENQ 

{ NOT (CarrierSense OR MissingClock) 

THEN transmitFrame (outgoingPacket, 3) 
ELSE transmitFrame (RTSFrame, 3); 

{ use common code to detect line state 
fCTSexpected := TRUE; 
rcvdframe := receiveFrame; 
fCTSexpected := FALSE; 

B-12 A P P E N D I X B llAP Access Control Algorithms 



IF fAdrinUse 
THEN BEGIN 

TransmitLinkMgmt :~ dupAddress; 
transmitDone := TRUE; 

END { IF } 

ELSE CASE rcvdFrame OF 
noFrame: 
IF fBroadcast 
THEN BEGIN 

transmitFrame (outgoingPacket, outgoingLength); 
TransmitLinkMgmt := transmitOK; 
transmitdone := TRUE; 

END; 

lapCTSframe 
IF (NOT fENQ) AND (NOT fBroadCast) 
THEN BEGIN 

transmitFrame (outgoingPacket, outgoingLength); 
TransmitLinkMgmt := transmitOK; 
transmitdone := TRUE; 

END; 
END; { CASE } 

{ Assume collision if we don't receive the expected CTS } 
IF NOT transmitdone 
THEN BEGIN 

CollsnCount := CollsnCount + 1; 
collsnHistory[O] := 1; 
IF collsnTries < maxCollsns 
THEN BEGIN 

optional } 
update history data 

LclBackoff :=min (max (Lc1Backoff*2,2),16); 
collsnTries := collsnTries + 1; 

END { IF } 
ELSE BEGIN 

TransmitLinkMgmt := excessCollsns; 
transmitdone := TRUE; 

END { ELSE } 
END { IF NOT ••• 

END { ELSE NOT • • • } 

UNTIL transmitdone; 

END; { Transmi tLinkMgrnt 

TransmitLinkMgmt function B-13 



TransmitFrame procedure 
The TransmitFrame procedure is responsible for putting data on the link. Certain details, such as 
how a flag is sent and a packet terminated, which includes sending the frame check sequence (FCS), 
are not explicitly stated here since they are hardware-dependent. 

PROCEDURE TransmitFrame (VAR frame: aFrame; framesize INTEGER); 

VAR 
i : INTEGER; 
bittimer : REAL; 

BEGIN 

disableRx; 

{ Generate the synchronizing pulse -- really required only before RTS frames} 
bittirner := RealTimer + 1.5 * bitTirne; 
enableTxDrivers; 
WHILE RealTime < bittimer DO BEGIN 
END; 
disableTxDrivers; 
bittimer := RealTimer + 1.5 * bitTimer; 
WHILE RealTime < bittimer DO BEGIN 
END; 

{ Start the actual frame transmission } 
enableTxDrivers; 
enableTx; 
txFLAG; txFLAG; { Output 2 opening FLAG's } 
FOR i : = 1 TO framesize DO 

TxData (frame.rawData[i]); 
txFCS; { Send the FCS 
txFLAG; 
txONEs; 
disableTxDrivers; 

Send the trailing FLAG 
Send 12 1's for extra clocks 

{ reestablish default listening mode ) 
resetMissingClock; 
enableRx; 

END; { TransmitFrarne } 

B-14 APPEND I X B LLAP Access Control Algorithms 



ReceivePacket procedure 

The ReceivePacket procedure given below is the primary interface routine to higher levels. This 
procedure is described as if synchronously called by the user. In many implementations, the lower
level ReceiveLinkMgmt function would be invoked by an intenupt routine. 

PROCEDURE ReceivePacket ( VAR dstParam : anAddress; VAR srcParam : anAddress; 

VAR typeParam : aLAPtype; VAR dataParam : aDataField; 
VAR dataLength : INTEGER); 

VAR 

status ReceiveStatus; 

BEGIN 

REPEAT 
status := ReceiveLinkMgmt; 
IF status = receiveOK 

THEN BEGIN 
WITH incomingPacket DO BEGIN 

dstParam := dstAddr; 

srcParam := srcAddr; 
typeParam := lapType; 

dataParam := dataField; 
END; ( WITH } 

dataLength := incomingLength; 

END; ( IF } 
UNTIL status = receiveOK 

END; ( ReceivePacket } 

ReceiveLinkMgmt function 

The ReceiveLinkMgmt function implements the receiver side of LLAP; it would typically be called 
from an interrupt routine rather than from ReceivePacket. 

FUNCTION ReceiveLinkMgmt : ReceiveStatus; 

VAR 

status : ReceiveStatus; 

CTSframe, ACKframe : aFrame; 

(continued) • 

ReceiveLinkMgmt function B-15 



BEGIN 

status := Receiving; 
WHILE status = Receiving DO 

CASE ReceiveFrame OF 
badframeCRC, badframeSize, badfrarneType, underrunError, overrunError: 
status := frarneError; 

lapENQfrarne : 
IF fAdrValid 
THEN BEGIN 

ACKframe.dstAddr := incomingPacket.srcAddr; 
ACKfrarne.srcAddr := MyAddress; 
ACKfrarne.lapType := lapACK; 
TransmitFrame (ACKframe,3); 
status := nullReceive; 

END { IF } 
ELSE BEGIN 

fAdrinUse := TRUE; 
status := nullReceive; 

END; { ELSE 

lapRTSfrarne 
IF fAdrValid 
THEN BEGIN 

CTSfrarne.dstAddr := incomingPacket.srcAddr; 
CTSframe.srcAddr := MyAddress; 
CTSframe.lapType := lapCTS; 
TransmitFrame (CTSfrarne,3); 

END { IF } 
ELSE BEGIN 

fAdrinUse := TRUE; 
status := nullReceive; 

END; { ELSE } 

lapDATAframe : 
IF fAdrValid 
THEN status := receiveOK 
ELSE BEGIN 

fAdrinUse := TRUE; 
status := nullReceive; 

END; { ELSE 

noFrarne: 
status := nullReceive; 

B-16 A P P E N D I X B LLAP Access Control Algorithms 



END; { CASE 
ReceiveLinkMgmt := status; 

END; { ReceiveLinkMgmt 

ReceiveFrame function 

The ReceiveFrame function is responsible for interacting with the hardware. 

FUNCTION ReceiveFrame : FrameStatus; 

VAR 
rcvtimer REAL; 

BEGIN 

Provide timeout for idle line I 
rcvtimer := RealTime + maxiDGtime; 
REPEAT 

UNTIL CarrierSense OR (RealTime> rcvtimer); 
IF NOT CarrierSense 
THEN BEGIN 

ReceiveFrame := noFrame; 
EXIT (ReceiveFrame); 

END; { IF 

{ Line is not idle, check if frame is for us } 
rcvtimer := RealTime + maxiFGtime; 
REPEAT 

{maxiFGtime is a good timeout value} 

UNTIL RxCharAvail OR (RealTime> rcvtimer); 
IF RxCharAvail 
THEN BEGIN { receive frame ) 

error := FALSE; 
REPEAT 

framedone := FALSE; incorningLength := 0; 

rcvtimer := RealTime + 1.5 * byteTime; 
REPEAT 

UNTIL RxCharAvail OR (RealTime> rcvtimer); 
IF RxCharAvail 
THEN BEGIN 

IF OverRun 
THEN BEGIN 

ReceiveFrame := overrunError; 
error := TRUE; 

END ( IF OverRun } (continued) • 

ReceiveFrame function B-17 



ELSE IF incomingLength < maxFrameSize 
THEN BEGIN 

incoming Length ::;;;;: incomingLength + 1; 
incomingPacket.rawData[incomingLength] ::;;;;: rxDATA; 

END { ELSE IF } 
ELSE BEGIN 

ReceiveFrame ::;;;;: badframeSize; 
error ::;;;;: TRUE; 

END; { ELSE } 

IF EndOfFrame THEN 
IF CRCok 
THEN BEGIN 

incomingLength ::;;;;: incomingLength - 2; 
IF incomingLength < minFrameSize 
THEN BEGIN 

ReceiveFrame ::;;;;: badframeSize; 
error ::;;;;: TRUE; 

END {IF incomingLength ... } 
ELSE frarnedone := TRUE; 

END { IF CRCok } 
ELSE BEGIN { bad CRC } 

END; 

ReceiveFrame ::;;;;: badfrarneCRC; 
error := TRUE; 

END { IF RxCharAvail 

ELSE BEGIN { RealTime > rcvtimer 
ReceiveFrame := underrunError; 
error := TRUE; 

END { ELSE } 

UNTIL framedone OR error; 

{ Check on validity of the frame 
IF framedone THEN 

{ account for CRC } 

IF fAdrValid THEN { if our address if valid, check on actual type } 
IF incomingPacket.lapType < $80 
THEN ReceiveFrame := lapDATAframe; 
ELSE CASE incomingPacket.lapType OF 

lapENQ : 
ReceiveFrame := lapENQframe; 

lapACK : 
BEGIN 

ReceiveFrame := lapACKframe; 
fAdrinUse := TRUE; 

END; { lapACK } 

B-18 A P P E N D I X B LLAP Access Control Algorithms 



lapRTS : 
ReceiveFrame := lapRTSframe; 

lapCTS : 
IF fCTSexpected 
THEN ReceiveFrame : = lapCTSframe 
ELSE BEGIN 

fAdrinUse := TRUE; 
ReceiveFrame := badframeType 

END ; { ELSE 

OTHERWISE 
ReceiveFr ame ·= badfr ameType; 

END { CASE ) 

ELSE IF incomingPacket.rawData[l) <> $FF 
THEN BEGIN 

fAdrinUse := TRUE; { we received something we didn't expect ) 
ReceiveFrame := noFrame; 

END { ELSE IF ) 
END { IF RxCharAvail ) 
ELSE ReceiveFrame := noFrame; 

resetRx; 
r esetMissingClock; 

END; { ReceiveFr ame ) 

Miscellaneous functions 

{ no CharAvail ) 

The following low-level routines are referenced by the foregoing procedural specification. 

FUNCTION bitCount (bi ts : bi tVector ) : INTEGER; 
VAR 

i , sum : INTEGER; 

BEGIN 
sum := 0; 
FOR i := 0 TO 7 DO 

sum := sum + bits[i); 
bitCount := sum 

END; { bitCount ) 

(continued) • 

Miscellaneous functions B-19 



FUNCTION min (vall, val2 INTEGER) INTEGER; 
BEGIN 

IF vall < val2 
THEN min := vall 
ELSE min := val2 

END; { min 

FUNCTION max (vall, val2 INTEGER) INTEGER; 
BEGIN 

IF vall > val2 
THEN max:= vall 
ELSE max := val2 

END; { max } 

FUNCTION Random (maxval : INTEGER) : INTEGER; 
BEGIN 

{ this function is implemented as any "good" pseudorandom number generator 
that produces a result in the range O .. maxval- 1 } 

END; 

sec implementation 

One of the integrated circuits used in the implementation of LocalTalk is the Zilog 8530 Serial 
Communications Controller (SCC). This section explains how the hardware interface routines 
declared in the foregoing sections could be implemented with that device. This explanation does 
not imply that the SCC must be used in the implementation of LLAP. Many other devices can be 
employed effectively to implement LLAP. All of the following registers and bit names are used by 
Zilog in its SCC documentation. 

Declaration 

CanierSense 

RcvDataAvail 

rxDATA 

EndOfFrame 

Description 

indicates that the hardware is sensing a frame on the link; corresponds 
to the complement of the SYNC/HUNT bit in RRO 

indicates that a data byte is available; corresponds to the Rx Character 
Available bit in RRO 

identifies the next data byte available (RR8) 

indicates that a valid closing flag has been detected; the EndOfFrame bit 
inRRl 

B-20 APP END I X B LLAP Access Control Algorithms 



Declaration 

CRCok 

OverRun 

MissingClock 

setAddress 

enableTxDrivers 
disableTxDrivers 

enableTx 
disableTx 

txFLAG 

txDATA 

txFCS 

txONEs 

resetRx 
enableRx 
disableRx 

resetMissingClock 

Description (continued) 

indicates that the received frame's FCS is correct (when EndOfFrame is 
true); the complement of the CRC/Framing Error bit in RR1 

indicates that the code did not keep up with data reception; the Rx 
Overrun Error bit in RR1 

indicates that the hardware has detected a missing transition on the 
link; the One Clock Missing bit in RR10 

sets the hardware to receive frames whose destination address matches 
MyAddress; sets WR6 in the SCC 

control the operation of the RS-422 drivers; the drivers would generally 
be controlled by one of the SCC's output bits (on the Macintosh 
computer, it's the RTS bit in WR5) 

control the operation of the data transmitter by means of the Tx Enable 
bit in WR5 

causes the automatic transmission of a flag at frame opening when Tx 
Enable is set; however, code must delay long enough to cause the extra 

flag; the trailing flag is generated automatically at frame end as part of 
the Tx Underrun processing 

causes the transmission of a data byte (WRS) 

causes the automatic transmission of the FCS by letting Tx Underrun 
occur 

causes 12-18 one-bits (l's) to be sent by disabling the sec transmitter 
(setting TX Enable to 0) while leaving the RS-422 drivers on and delaying 

control the receiver by means of the Rx Enable bit in WR3; resetRx should 
also flush the receive FIFO 

causes the MissingClock indication to be cleared by a Reset Missing 
Clock command via WR14 

sec implementation :0.21 



CRC-CCITT calculation 

The CRC-CCITT (cyclic-redundancy check Consultative Committee on International Telephone & 

Telegraph) algorithm, used to determine the FCS, uses the standard CRC-CCITT polynomial: 

G(x) = .xl6 + .xl2 + xs + 1 

The CRC-CCITT FCS value corresponding to a given packet is calculated based on the following 
polynomial division identity: 

M(x) R(x) 
G(x) = Q(x) + G(x) 

where: 

M(x) = binary polynomial (corresponding to the packet after complementing its first 16 bits) 

R(x) remainder after dividing M(x) by the generating polynomial (its coefficients 
are the bits of the CRC) 

Q(x) = quotient after dividing M(x) by the generating polynomial (its coefficients are 
ignored when calculating the CRC) 

At the transmitter, the implementation of the CRC for the FCS field computes the CRC starting 
with the first bit of the destination node ID following the opening flag and stopping at the end of 
the data field. The FCS field is equal to the l 's complement of the transmitter's remainder. The same 
calculation is performed at the receiver; however, the FCS bytes themselves are included in the 
computation. The result of a correctly received transmission is then the binary constant 
0001110100001111 (x1 5 .... ~{)). TI1is constant is a characteristic of the divisor. 

In addition to the division of the data's binary value by the generating polynomial to yield the 
remainder for checking, the following manipulations occur: 

• The dividend is initially preset to ali i 's before the computation begins, which has the effect of 
complementing the first 16 bits of the data. 

• The transmitter's remainder is inverted bit-by-bit (FCS field) as it is sent to the receiver. The 
high-order bit of the FCS field is transmitted first (x1s ... XJ). 

If the receiver computation does not yield the binary constant 0001110100001111, the packet is 
discarded. 

B-22 APPEND I X B LLAP Access Control Algorithms 



Appendix C AppleTalk Parameters 

CONTENTS 

llAP parameters I C-2 

AARP parameters I C-4 

EtherTalk and TokenTalk parameters I C-4 

DDP parameters I C-6 

RTMP parameters I C-8 

AEP parameters I C-9 

NBP parameters I C-9 

ZIP parameters I C-10 

ATP parameters I C-10 

PAP parameters I C-11 

ASP parameters I C-12 

ADSP parameters I C-13 

AFP parameters I C-13 

• 

C-1 



This appendix summarizes various numerical quantities used in the AppleTalk protocols. This 
information is organized into subsections, one for each relevant protocol. A $ symbol is used to 
denote hexadecimal; a % symbol represents binary numbers. All other numerals are decimal. 

IlJlP paranneters 

This section provides values for the LLAP type field, timing constants used by LLAP, and LLAP 
frame parameters. 

LLAP type field values 

$00 

$01 through $7F 

$01 through $OF 

$01 
$02 

$OF 

$80 through $FF 

$81 

$82 

$84 

$85 

C-2 A P P END I X C AppleTalk Parameters 

Description 

invalid LLAP type value (do not use) 

valid LLAP type values for use in LLAP client 
packets 

reserved for Apple Computer's use only 

DDP short-form header packet 

DDP extended-form header packet 

experimental LLAP packet (reserved for Apple 
Computer's use only) 

reserved for LLAP control frames 

lapENQ packet 

lapACK packet 

lapRTS packet 

lapCTS packet 



• Figure C 1 LLAP rype field values 

Valid l lAP lYJX'S 

SOD 50F 

soo SOl $02 503-SOE 
Invalid DDP DDP Reserved for Apple 

short long 

LLAP timing constant 

interframe gap (IFG) 

interdialogue gap (IDG) 

IDG slot time 

LLAP frame parameter 

SOF 

Experimcmal 

flag byte used for framing an LLAP packet 

number of flag bytes needed at the start of a 
frame 

number of bits in abort sequence 

maximum number of data bytes in LLAP packet 
(not including LLAP header, frame preamble, and 
frame trailer) 

S7F 

580 5HI 582 583 
ENQ ACK 

Value 

less than 200 microseconds 

at least 400 microseconds 

100 microseconds 

Description 
0/c.OllllllO 

2 or more flag bytes 

12-18 bits 

600 bytes 

Keservcd for lLo\1' frames 

5FF 

584 585 586-SFF 
RTS crs 

LLAP parameters C-3 



~ paranneters 
AARP packet parameter 

SNAP protocol discriminator for AARP packets 

broadcast destination address for AARP packets 
on Ethernet 

broadcast destination address for AARP packets 
on token ring 

AARP command 

AARP Request 

AARP Response 

AARP Probe 

Description 

$roxxxmF3 
$090007FFFFFF 

Value 

1 

2 

3 

EtherTalk and TokenTalk paranneters 
Packet parameter 

SNAP protocol discriminator 
for AppleTalk packets 

broadcast destination address for AppleTalk 
packets on Ethernet 

AARP values as used for EtherTalk 

hardware type indicating Ethernet 

hardware type indicating token ring 

protocol type indicating AppleTalk 

Ethernet hardware address length 

AppleTalk protocol address length 

AARP probe retransmission interval 

AARP probe retry count 

C-4 A P P E N D I X C Apple Talk Parameters 

Description 

$00X>7009B 

$090007FFFFFF (EtherTalk) 
$C000400000Xl (TokenTalk) 

Description 

1 

2 

$809B 

6 bytes 

4 bytes (high byte must be 0) 

1/5 of a second 

10 



• Figure C2 Zone multicast addresses 

ELAP TLAP 

AppleTalk broadcast address $090007FFFFFF $C00040000000 

Zone multicast addresses $090007000000 $C00000000800 
When used with the address $C00000001000 
assignment algorithm described $C00000002000 
in Chapter 8, the first address $C00000004000 
in each list represents a[O]. $C00000008000 

$C00000010000 
$C00000020000 

253 addresses $C00000040000 
I $C00000080000 
I $C00000100000 

$C00000200000 
$C00000400000 
$C00000800000 
$C00001000000 
$C00002000000 
$C00004000000 
$C00008000000 
$C00010000000 

$0900070000FC $C00020000000 

EtherTalk and TokenTalk parameters CS 



DDP parameters 

This section provides values for DDP packet parameters, protocol type fields, and socket numbers. 

DDP packet parameter 

LLAP type value for short-form header DDP 
packet 

LLAP type value for extended-form header DDP 
packet 

maximum number of data bytes in a DDP 
packet 

DDP type field value 

$00 

$01 through $FF 

$01 through $OF 

$01 

$02 

$03 

$(}4 

$05 

$(X) 

$07 

C-6 A P P E N D I X C Apple Talk Parameters 

Description 

1 

2 

586 bytes 

Description 

invalid DDP type value (do not use) 

valid DDP type values for use in DDP client 
packets 

reserved for Apple Computer's use only 

RTMP Response or Data packet 

NBP packet 

ATP packet 

AEP packet 

RTMP Request packet 

ZIP packet 

ADSP packet 



• Figure C-3 DDP type field values 

soo SOF 

$00 SOl S02 S03 S04 
nvali( RTMP NllP ATP AEP 

DDP socket value 

$00 

$FF 

$01 through $FE 

$01 through $7F 

$01 through $3F 

$01 

$02 

$04 
$(Xi 

$40 through $7F 

S05 So6 S07 
RTMP ZIP ADSP 

DDP 1ypcs 

$08-SOF 
Reserved for Apple 

Description 

invalid (do not use) 

invalid (do not use) 

valid DDP sockets 

statically assigned sockets 

reserved for Apple Computer's use only 

RTMP socket 

names information socket (NIS) 

Echoer socket 

zone information socket (ZIS) 

experimental use only (do not use in released 
products) 

SFF 

DDP parameters C-7 



• Figure C-4 DDP socket numbers 

Statically a;,s!gncd sockeL~ 
' 

sao S3F S7F 

', 
', 

' , 

sao SOl S02 S03 SO t 05 S06 S07- S3F ' ' 
Invalid RT.\IP NIS :choc ZIS HcstrYcd for Apple ' ' 

RTMP parameters 
RTMP packet parameter 

DDP type value for RTMP Response and Data 
packets 

DDP type value for RTMP Request packets 

RTMP Request packet function field value 

' 

Description 

1 

5 
1 

Dynamical!)' a;,signtd sockets 

~0-S7F 

For cxpcrimcntalttiC 

RTMP Route Data Request packet function value 2 (split horizon processed) 
3 (no split horizon processing) 

RTMP timer value Description 

send-RTMP timer 10 seconds 

validity timer 20 seconds 

timer for aging A-ROUTER in a nonrouter node 50 seconds 

Miscellaneous value Description 

RTMP Hstening socket socket 1 

maximum number of hops supported 16 hops 

C-8 A P P E N D I X C AppleTalk Parameters 

SFE 



AEP parameters 

AEP socket parameter 

AEP socket 

AEP packet parameter 

DDP type value for AEP packets 

Echo function values 

maximum data size 

NBP parameters 

NBP socket parameter 

names information socket (NIS) 

maximum number of characters in object, type, 
or zone fields 

Wildcard symbol 

* 

= 

NBP packet parameter 

DDP type value for NBP packets 

NBP control field value 

Number 

socket 4 

Description 

4 

1 = Echo Request 
2 = Echo Reply 

585 bytes 

Description 

socket 2 

32 characters 

Description 

used only in the zone field of an entity name to 
mean the zone of the packet's sender 

used as the object and/or type field of an entity 
name to mean all objects and/or all types 
(cannot be used as the zone field) 

characters within object and/or type field used 
to match zero or more characters. 
Maximum of one per field. 

Description 

2 

1 = BrRq 
2 = LkUp 
3 = LkUp-Reply 
4 = FwdReq 

NBP parameters C-9 



ZIP parameters 
ZIP socket parameter Number 

zone information socket socket 6 

ZIP function Value 

ZIP Query 1 

ZIP Reply 2 

ZIP GetNetlnfo 5 
ZIP GetNetlnfoReply 6 
ZIP Extended Reply 8 

ZIP Notify 7 

ZIP GetMyZone 7 (in ATP user bytes) 

ZIP GetZoneList 8 (in ATP user bytes) 

ZIP GetLocaiZones 9 (in ATP user bytes) 

ZIP timer value Description 

Query retransmission time 10 seconds 

ZIP bringback time 10 minutes 

ATP parameters 
ATP packet parameter Description 

DDP type value for ATP packets 3 

function code values o/~1 =TReq 
%10 = TResp 
%11 =TRel 

maximum size of data in ATP packet 578 bytes 

ATP TRel timer indicator Value 

<XXl 30 seconds 

001 1 minute 

100 8 minutes 

C-10 APPEND I X C AppleTalk Parameters 



PAP parameters 

PAP type 

Open Conn 

OpenConnReply 

Send Data 

Data 

Tickle 

CloseConn 

CloseConnReply 

SendS tat us 

StatusReply 

PAP packet parameter 

maximum data size 

maximum length of status string 

PAP timer value 

OpenConn request ATP retry timer 

tickle timer 

connection timer 

SendData request retry timer 

PAP retry count value 

OpenConn request retry count 

PAP result code 

Printer Busy 

Value 

1 

2 

3 
4 

5 
6 
7 

8 

9 

Description 

512 bytes 

255 bytes (not including the length byte) 

Description 

2 seconds 

60 seconds 

2 minutes 

15 seconds 

Description 

5 

Description 

$FFFF 

PAP parameters C-11 



ASP parameters 

SPFunction Value 

CloseSession 1 

Command 2 

GetStatus 3 

OpenSess 4 

Tickle 5 
Write 6 

WriteContinue 7 

Attention 8 

ASP timer value Description 

tickle timer 30 seconds 

session maintenance timer 2 minutes 

Decimal value Hex value SPError 

0 ($00) NoError* 

-1066 $FBD6 BadVersNumt 

-1067 $FBD5 BuffooSmallt 

-1068 $FBD4 NoMoreSessions* 

-100) $FBD3 NoServerst 

-1070 $FBD2 ParamErr* 

-1071 $FBD1 ServerBusyt 

-1072 $FBDO SessCiosed* 

-1073 $FBCF Size Err* 

-1074 $FBCE TooManyCiients* 

-1075 $FBCD NoAck* 
* This error can be returned on both workstation and server ends. 
t This error can be returned on the workstation end only. 

* This error can be returned on the server end only. 

The ASP version number described in Chapter 11, "AppleTalk Session Protocol," is version $0100. 

C-12 A P P E N D I X C Apple Talk Parameters 



The values -1060 to 1065 are reserved for implementation-dependent errors. All other values are 
invalid in this field. The following error codes are the only ones actually transmitted through ATP 
(on the OpenSession call): NoError, BadVersNum, and ServerBusy. 

ADSP parameters 
ADSP control code Value 

Probe or Acknowledgment 0 

Open Connection Request 1 

Open Connection Acknowledgment 2 

Open Connection Request and 3 
Acknowledgment 

Open Connection Denial 4 

Close Connection Advice 5 
Forward Reset 6 

Forward Reset Acknowledgment 7 

Retransmit Advice 8 

ADSP packet parameter Description 

DDP type value for ZIP packets 7 

maximum data size 572 bytes 

AFP parameters 
Each function code is a 16-bit integer sent in the packet high-byte first. 

Decimal value Hex value AFP function 

1 $01 ByteRangeLock 
2 $02 Close Vol 
3 $03 CloseDir 
4 $04 CloseFork 

(continued) • 

AFP parameters C-13 



Decimal value Hex value AFP function (continued) 

5 $05 Copy File 
6 $(X) CreateDir 
7 $IJ7 CreateFile 
8 $(B Delete 
9 $00 Enumerate 
10 $0A Flush 
11 $0B FlushFork 
14 $0E GetForkParms 
15 $OF GetSrvrlnfo 
16 $10 GetSrvrParms 
17 $11 GetVolParms 
18 $12 Login 
19 $13 LoginCont 
a> $14 Logout 
21 $15 MapiD 
22 $16 Map Name 
23 $17 MoveAndRename 
24 $18 Open Vol 
25 $19 OpenDir 
~ $1A OpenFork 
Zl $1B Read 
28 $1C Rename 
~ $10 SetDirParms 
~ $1E SetFileParms 
31 $1F SetForkParms 
32 m SetVolParms 
33 $21 Write 
34 $22 GetFileDirParms 
35 $23 SetFileDirParms 
36 $24 ChangePassword 
'5I $25 GetUserlnfo 
48 $~ Ope nOT 
4) $31 CloseDT 
51 $33 Getlcon 
52 $34 Getlconlnfo 
53 $35 AddAPPL 

C14 A P P END I X C AppleTalk Parameters 



Dedmal value Hex value AFP function (continued) 

54 $36 RmvAPPL 
55 $37 GetAPPL 
56 $38 Add Comment 

" $39 RmvComment 
58 $3A GetComment 
192 $0) Addlcon 

Each call returns a result code, which is a 4-byte integer. 

Declmal value Hex value FPError 

0 $0 No Err 
-:an $FFFFEC78 Access Denied 
-5001 $FFFFEC77 AuthContinue 
-5002 $FFFFEC76 BadUAM 
-5003 $FFFFEC75 BadVersNum 
-5004 $FFFFEC74 BitmapErr 
-5005 $FFFFEC73 CantMove 
-5()1) $FFFFEC72 DenyConflict 
-m $FFFFEC71 DirNotEmpty 
-m $FFFFEC70 DiskFull 
-500) $FFFFEC6F EOFErr 
-SOlO $FFFFEC6E FileBusy 
-5011 $FFFFEC6D Flat Vol 
-5012 $FFFFEC6C ItemNotFound 
-:~)13 $FFFFEC6B LockErr 
-5014 $FFFFEC6A MiscErr 
-5015 $FFFFEC69 NoMoreLocks 
-5016 $FFFFEC68 NoServer 
-5017 $FFFFEC67 ObjectExists 
-5018 $FFFFEC66 ObjectNotFound 
-5019 $FFFFEC65 ParamErr 
-SOJl $FFFFEC64 RangeNotLocked 
-5021 $FFFFEC63 RangeOverlap 
-5022 $FFFFEC62 Sessdosed 
-5023 $FFFFEC61 UserNotAuth 

(continued) • 

AFP parameters C lS 



Decimal value Hex value FPError (continued) 

-~ $FFFFEC60 CallNotSupported 
-5025 $FFFFECSF ObjectTypeErr 
-t'fJ'lfJ $FFFFECSE TooManyFilesOpen 
-t'fJZI $FFFFECSD ServerGoingDown 
-t'JJ28 $FFFFECSC CantRename 
-t'JJ'JJJ $FFFFECSB DirNotFound 
-5(00 $FFFFECSA IconTypeError 
-5031 $FFFFEC59 VolLocked 
-5032 $FFFFEC58 ObjectLocked 

C-16 APPEND I X C AppleTalk Parameters 



Appendix D Character Codes 

D-1 



Seveml AppleTalk protocols utilize character string entity names, which can be composed of any 
8-bit characters. Their representations are exactly the same as those used by the Macintosh and are 
shown in Table D-1 below. 

• Table D·l Character set mapping used in AppleTalk 

First digit 

0 1 2 3 4 ; 6 7 8 9 A B C D E F 
Second 
digit 0 

2 

3 

4 

; 

6 

7 

8 

9 

A 

B 

c 

D 

E 

F 

NUL 

SOH 

STX 

1-.'TX 

EOT 

ENQ 

ACK 

BEL 

BS 

HT 

LF 

vr 

FF 

CR 

so 

SJ 

OLE 
SPACE 

DCI ! 
DC2 

" 
DC3 

# 

DC4 $ 
NAK 

% 
SYN 

& 
ETB I 

CAN ( 

EM ) 

SUB • 
ESC + 

FS 

' 
GS -
RS 

us I 

0 @ p 

1 A Q 

2 B R 

3 c s 
4 0 T 

5 E u 

6 F v 

7 G w 
8 H X 

9 I y 

: J z 
; K [ 

< L \ 

= M I 

> N " 
? 0 -

' A e t p 00 

a q A e 0 ± 

b r ~ i ¢ ~ 

c s E i £ ~ 

d t N i § ¥ 

e u 6 I • Jl 

f v D n <J () 

g w a 6 8 r 
h X a 0 ® n 
i y a 0 © 1t 

j z a 0 TM f 
k I a 0 

, a 

I I a (I .. 2 

m I \ u * n 
n - e (i IE ~ 

DEL e 0 ti 0 0 

.......... - Stands for a nonbreaking space, the same width as a digit. 

D-2 A P P E N D I X D Character Codes 

l -

i -

, " 

" " f ' 

::=:: ' 

.1 + 

. 0 

. y 

... 

.......... 

A 
A 

0 

CE 

ce 



An implementation of the AppleTalk protocols such as NBP and ZIP that use character string 
names must often perform string comparison. Throughout AppleTalk, this comparison is done in a 
case-insensitive manner (that is, K = k), and it must also be done in a diacritical-sensitive manner 
(that is, e ¢ e '¢ e). The mapping in Table D-2 shows the rules for uppercase equivalence of 
characters in AppleTalk. For example, lowercase c; matches uppercase c; in a string comparison. 
Any character that does not appear in this table has no uppercase equivalent in AppleTalk and 
therefore can only match itself. Note that this mapping does not exactly conform to the standards 
used in all human languages. In certain languages, the uppercase equivalent of e is E; in other 
languages (and in Apple Talk), it is E. 

• Table D-2 Lowercase-to-uppercase mapping in AppleTalk 

Lowercase Uppercase equlvalent 
Value Character Value Character 

$61 a $41 A 
$62 b $42 B 

$7A z $5A z 
$88 a $CB A 
$8A a $8) A. 
$8B a $CC A. 
$&: a $81 A 
$80 ~ $82 ~ 
$8E e $83 E 
$96 ii $84 N 
$9A 0 $85 (> 

$9B 0 $CD 0 
$9F 11 $86 0 
$BE re $AE .tE 

$BF 0 $AF 0 
$CF re $CE <E 

Character codes D-3 



Glossary 

AARP: see AppleTalk Address Resolution Protocol. 

abort sequence: 12-18 1's (one bits) at the end of an 
LLAP frame. 

access modes: a set of permissions used by AFP to 
regulate access to a file; AFP supports four access 
modes: read, write, read-write, and none. 

access privileges: the privileges given to or 
withheld from users to open and make changes to a 
directory and its contents. Through the setting of 
access privileges, you control access to the 
information that is stored on a file server. 

Acknowledge control packet: an LLAP packet 
sent in response to an Enquiry control packet, 
indicating that the requested LLAP node number is 
already in use. 

Address Mapping Table (AM1): a collection of 
protocol-to-hardware address mappings for each 
protocol stack that a node supports. The AMT is 
updated by AARP to ensure that current addressing 
information is available. 

address resolution: the translation of node 
addresses between different node-numbering 
schemes. 

ADSP: see AppleTalk Data Stream Protocol. 

AEP: see AppleTalk Echo Protocol. 

AFI: see AppleTalk Filing Interface. 

AFP: see AppleTalk Filing Protocol. 

AFP-file-system-visible entity: a network
visible entity accessible through the AFI. 

AFP translator: workstation software that 
translates native file system commands to AFP calls; 
the AFP translator obtains the commands from the 
NFI and translates them to the AFI for transmission 
over the network to a file server. 

ALO transaction: see at-least-once transaction. 

AMT: see Address Mapping Table. 

ancestor: a directory that is along the path to a 
destination CNode (file or directory), known as the 
descendent. 

AppleTalk Address Resolution Protocol 
(AARP): the protocol that reconciles addressing 
discrepancies in networks that support more than 
one set of protocols. For example, by resolving the 
differences between an Ethernet addressing scheme 
and the AppleTalk addressing scheme, AARP 
facilitates the transport of DDP packets over a high
speed EtherTalk connection. 

AppleTalk Data Stream Protocol (ADSP): a 
connection-oriented protocol that provides a reliable, 
full-duplex, byte-stream service between any two 
sockets in an AppleTalk internet. ADSP ensures in
sequence, duplicate-free delivery of data over its 
connections. 

AppleTalk Echo Protocol (AEP): a simple 
protocol that allows a node to send a packet to any 

G-1 



other node in an AppleTalk internet and to receive an 
echoed copy of that packet in return. 

AppleTalk Filing Interface (API): the interface 
to an AFP ftle server through which workstations 
can gain access to server volumes, ftles, directories, 
and forks. 

AppleTalk Filing Protocol (AFP): the 
presentation-layer protocol that allows users to 
share data ftles and application programs that reside 
in a shared resource, known as a file server. 

AppleTalk Session Protocol (ASP): a general
purpose protocol that uses the services of ATP to 
provide session establishment, maintenance, and 
teardown, along with request sequencing. 

AppleTalk Transaction Protocol (ATP): a 
transport protocol that provides a loss-free 
transaction service between sockets. This service 
allows exchanges between two socket clients in 
which one client requests the other to perform a 
particular task and to report the results; ATP binds 
the request and response together to ensure the 
reliable exchange of request-response pairs. 

ASP: see AppleTalk Session Protocol. 

at-least-once (ALO) transaction: an ATP 
transaction in which the request is repeated until a 
response is received by the requester or until a 
maximum retry count is reached. This recovery 
mechanism ensures that the transaction request is 
executed at least one time. 

ATP: see AppleTalk Transaction Protocol. 

backbone network: a central network to which a 
number of other smaller, usually lower-speed, 
networks connect; the backbone (or spine) network 
is usually constructed with a high-speed 
communication medium. 

G-2 GLOSSARY 

backbone router: one in a series of internet routers 
that are used to interconnect several AppleTalk 
networks through a backbone network. 

background spooler: a print-spooling process that 
runs in the background on an originating computer. 

bitmap order: when data is packed in bitmap order, 
the parameter corresponding to the least -significant 
set bit in the bitmap is packed ftrst, followed by the 
parameter corresponding to the next most
significant set bit; packing continues in this manner, 
and the packet ends with the parameter 
corresponding to the most-significant set bit. 

bit stuffing: a technique used to ensure that the 
unique bit pattern used to designate a flag byte 
(01111110) does not occur within the data packet 
When bit stuffing is used, the link-level protocol 
(such as LLAP) inserts a 0 bit after every string of 
ftve consecutive 1 bits detected in the data stream 
being transmitted (the receiving LAP performs the 
inverse operation, stripping out each 0 bit that 
follows ftve consecutive 1 bits, in order to restore 
the data to its original state). 

broadcast hardware address (broadcast ID): a 
hardware address common to all nodes on a data 
link; packets sent to this address will be delivered to 
every node on the data link. Broadcast hardware 
addresses facilitate broadcast transmissions. 

broadcasting: delivery of a transmission to all 
active stations at the same time, such as over a bus
type local network. 

broadcast packet: a packet intended to be received 
by all nodes in a network. In a LocalTalk 
implementation, broadcast packets are assigned a 
destination node identification number of 255 ($FF). 



broadcast protocol address: an address that is 
accepted by all nodes that support a particular 
protocol stack; the broadcast protocol address 
facilitates the directed broadcast of packets to this 
subset of nodes. 

broadcast transmission dialog: in a LocalTalk 
environment, the transmission of packets intended 
to be received by all nodes in the network. The 
source sends a lapRTS packet to the broadcast 
hardware address and then sends the data packet. 

bus: a single, shared communication link. Messages 
are broadcast along the whole bus, and each network 
device listens for and receives messages directed to 
its unique address. The physical medium of a 
LocalTalk network is a twisted-pair bus. 

Carrier Sense Multiple Access with Collision 
Avoidance (CSMA/CA): a technique that allows 
multiple stations to gain access to a transmission 
medium (multiple access) by listening until no 
signals are detected (carrier sense), and then signaling 
their intent to transmit before transmitting. When 
contention occurs, transmission is based on a 
randomly selected order (collision avoidance). LLAP, 
used for node-to-node delivery in a LocalTalk 
environment, uses the ~MA/CA technique. 

catalog node (CNode): an entry (either a directory 
or a fde) in a volume catalog of a disk. AFP recognizes 
two types of CNodes: internal CNodes, which are 
always directories, and leaf CNodes, which are 
located at the end of a limb in the tree-structured 
catalog and which can be either files or empty 
directories. 

Carr: see Consultative Committee on 
International Telephone & Telegraph. 

clear-to-send ( crs) control packet: an LLAP 
packet sent in response to an RTS control packet, 
indicating the sending node's receipt of the RTS and 
its readiness to receive the data packet. 

cllent: a software process that makes use of the 
services of another software process. See socket 
client. 

closed connection: a connection that has been 
tom down. In a closed connection, neither end of 
the connection is established, so data transmission 
over the connection is no longer possible. 

CNode: see catalog node. 

connection: an association between two sockets 
that facilitates the establishment and maintenance 
of an exclusive dialog between two entities. See 
session. 

connection end: in a connection, the 
communicating socket and the connection 
information associated with it. 

connection identifter (ConniD): an identifi
cation number associated with each connection; 
a connection provides a unique identifier by using 
the socket address and the ConniD of the two 
connection ends. 

connection-listening socket: a socket that 
accepts open-connection requests and passes them 
along to its ADSP client for further processing. 

connection state: the term used to refer 
collectively to control and state information that is 
maintained by the two ends of a connection. 

connection timet: a timer that is started when a 
connection opens. When an end receives a packet 
from the other end, the timer is reset; the timer 

Glossary G-3 



expires if the end does not receive any packets 
within a specified time period (if no data is being 
transmitted, tickling packets can be sent to keep the 
connection open). Connection timers are used by the 
AppleTalk session-layer protocols, such as PAP, ASP, 
andADSP. 

ConniD: see connection identifier. 

Consultative Committee on International 
Telephone & Telegraph (CenT): a committee 
formed in 1938 that sets the international standards 
for the hardware and communications protocols for 
data and voice transmissions. 

control information (CI): the field in an A TP 
packet indicating the packet type and various 
control information, such as the end-of-message 
flag. 

control packets: messages that do not contain 
data, but that are used for administrative purposes, 
such as enquiry, acknowledgment, and notification; 
control packets are also used to open and close 
connections. 

CRC: see cyclic-redundancy check. 

CSMA/CA: see Carrier Sense Multiple Access with 
Collision Avoidance. 

CTS: see clear-to-send control packet. 

cyclic-redundancy check (CRC): an error-checking 
control technique that uses a polynomial algorithm 
to generate a 16-bit FCS based on the content of the 
frame. The FCS is appended to the end of each frame 
and is matched by the receiver to determine whether 
an error has occurred. LLAP uses the standard CRC
CCITI algorithm: G(x) = x16 + x12 + x5 + 1. 

DAS: see dynamically assigned socket. 

G-4 GLOSSARY 

datagram: a self-contained packet, independent of 
other packets in a data stream. Since a datagram 
carries its own routing information, its reliable 
delivery does not depend on earlier exchanges 
between the source and destination devices. DDP is 
responsible for delivering AppleTalk transmissions as 
data grams. 

Datagram Dellvery Protocol (DDP): the 
network-layer protocol that is responsible for the 
socket-to-socket delivery of datagrams over an 
AppleTalk internet. 

data packets: messages that contain client data. 

data transparency: a technique of data 
transmission that allows data characters to be sent 
or received in any form, without regard to their 
possible interpretation as control characters. For 
example, to ensure that data containing six 
consecutive 1 bits is not interpreted as a flag byte, 
LLAP uses a data transparency mechanism known as 
bit stuffmg. See bit stuffmg. 

DDP: see Datagram Delivery Protocol. 

default zone: the zone to which any node on an 
extended network will automatically belong until a 
different zone is explicitly selected for that node. 

deny modes: a set of AFP permissions that 
establishes what rights should be denied to users 
attempting to open a me fork that has already been 
opened by another user. 

DES: data encryption standard published by the 
National Bureau of Standards (FIPS publication #46). 

descendent: a destination CNode (an entry in a 
volume catalog of a disk); the directories along the 
path to the descendent are considered its ancestors. 

Desktop database: a database used by a me server 
to hold information for use by the Macintosh Finder. 



Desktop me: an invisible resource me that holds 
information for use by the Macintosh Finder. 

directed broadcast: the transmission of a packet 
that is intended to be received by all nodes on a 
network other than the sender's network. 

directed packet: a packet intended to be received 
by a single node. 

directed transmission dialog: in a LocalTalk 
environment, the transmission of packets intended 
to be received by a single node. The source sends a 
lapRTS packet to the destination; the destination 
responds with a lapCfS packet; then the source 
sends the data packet. 

directory: a construct for organizing information 
stored on a disk; disk directories can contain files and 
other directories. Each directory for a disk volume 
has an identifier, through which it and the ftles and 
other directories that it contains can be addressed. 
Sometimes called "folder." 

Directory ID: a unique value that is assigned to 
each directory when it is created. 

duplicate transaction-request ffitering: an A TP 
process used to implement XO transaction service; in 
this process, the responder searches through a 
transactions list to determine whether the request 
has already been received Duplicates are not 
delivered to ATP's client. 

dynamically assigned socket (DAS}: a socket 
assigned dynamically by DDP upon request from 
clients in the node. In an AppleTalk network, the 
sockets numbered 128-254 ($80-$FE) are allocated as 
DASs. 

dynamic node address assignment: an addressing 
scheme that assigns node addresses dynamically, 
rather than associating a permanent address with 

each node. Dynamic node address assignment 
facilitates adding and removing nodes from the 
network by preventing conflicts between old node 
addresses and new node addresses. 

ELAP: see EtherTalk Link Access Protocol. 

end of message (EOM): a signal that indicates the 
end of a message. When the EOM bit is set in the 
header of a packet, it indicates that this packet is the 
last in a multipacket message, such as a multipacket 
A TP response or an ADSP data stream. 

Enquiry control packet: an LLAP packet sent as 
part of the dynamic node number assignment 
algorithm, asking if any node on the link is currently 
using the specified LLAP node number. 

entity identifier: the unique address of a 
network-visible entity's socket in a node within an 
internet. The specific format of an entity identifier is 
network-dependent. 

entity name: a name that an NVE may assign itself. 
Although not all NVEs have names, NVEs can 
possess several names (or aliases). An entity name is 
made up of three character strings: object, type, and 
zone. 

entity type: the part of an entiEy name that 
describes to what class the entity belongs; for 
example, "LaserWriter" or "AFPServer." 

entry state: a variable associated with each entry in 
a routing table; three possible values for this variable 
are good, suspect, and bad. 

enumerate: to list the offspring (files and 
directories) of a directory and selected parameters 
for those offspring. 

Glossary G-5 



enumerator value: a number used to distinguish 
among several entity names that are registered on 
the same socket On a given socket, each entity 
name will have a unique enumerator value. 

EOM: see end of message. 

EtherTalk: Apple's data-link product that allows an 
AppleTalk network to be connected by Ethernet 
cables. 

EtherTalk Unk Access Protocol (ELAP): the 
link-access protocol used in an EtherTalk network. 
ELAP is built on top of the standard Ethernet data
link layer. 

exactly-once (XO) transaction: an ATP 
transaction in which the request is delivered only one 
time, thus protecting against damage that could 
result from a duplicate transaction. 

extended AppleTalk network: an AppleTalk 
network that allows addressing of more than 254 
nodes and can support multiple zones. 

extended DDP header: the DDP header type used 
for packets that are transmitted from one network 
to another network within an AppleTalk internet. 

FCS: see frame check sequence. 

file: a collection of related information that is 
stored on a disk. A file on a disk has a name through 
which it is accessible. Related files may be grouped 
together in a common directory. In the Macintosh 
file system and the AFI, a ftle is divided into two 
forks: a data fork and a resource fork. 

file server: a computer running a specialized 
program that provides network users with acce~ to 
shared disks or other mass storage devices. Through 
the implementation of access controls, a file server 
facilitates controlled access to common ftles and 
applications. 

G-6 GLOSSARY 

Finder: a Macintosh application that allows access 
to documents and other applications; the Finder uses 
icons to represent objects on a disk or volume. You 
use it to manage documents and applications and to 
get information to and from disks. 

flag byte: a special bit pattern that is used in bit
oriented protocols to mark the beginning (and often 
the end) of a frame. The flag byte used as a frame 
delimiter in LLAP is the bit sequence 01111110 ($7E). 

flow quantum: the maximum amount of data that 
can be transferred in a PAP transaction based on the 
buffer space available at the end that is issuing the 
read request. 

flush: to write data from a cache in memory to a 
disk. 

FM-0: a bit-encoding technique that provides self
clocking. LocalTalk implementations use FM-0 
encoding. 

folder: see directory. 

fork: Macintosh files are divided into two parts, 
known as forks; the data fork is an unstructured 
ftnite sequence of data bytes. The resource fork is 
the part of a ftle that is accessible through the 
Macintosh Resource Manager and that contains 
specialized data used by an application, such as 
menus, fonts, and icons (as well as the application 
code for an application flle). 

frame: a group of bits forming a distinct 
transmission unit that is sent between data-link
layer entities. Each frame contains its own control 
information for addressing and error checking. The 
flfSt several bits in a frame form a header that 
contains address and other control information, 
followed by the data (or message) being sent, and 
ending with a check sequence for error detection. 



frame check sequence (FCS): a 16-bit sequence 
used for error checking that occurs at the end of 
each frame. In a LocalTalk implementation, the 
standard CRC-CCITI algorithm is used to compute 
the FCS. It is computed as a function of the 
contents of the destination node ID, source node 
ID, LLAP type, and data fields. 

frame preamble: the part of an LLAP frame preced
ing the LLAP packet; specifically, 2 or more flag bytes. 

frame ttaller: the part of an LLAP frame following 
the LLAP packet; specifically, the FCS, trailing flag 
byte, and an abort sequence. 

gateways: nodes that separate and manage 
communication between different types of 
networks; for example, a gateway is used to connect 
an AppleTalk protocol-based network to a non
AppleTalk protocol-based system. The gateway 
serves as a translator between the protocols of the 
two connected networks. 

global backoff mask: a mask used by LLAP that 
takes on particular values to adjust the amount of 
time a node waits before transmitting in order to 
avoid collisions. The possible values in binary are: 0, 
01, 011, 0111, 01111. 

guest: a user who is logged on to a ftle server with
out a registered user name and password. A guest 
cannot own a directory. Guests receive whatever 
access privileges are assigned to "world." 

half-open connection: a connection in which one 
end is established and the other end is closed, 
unreachable, or not yet open. 

half router: an internet router used primarily to 
connect two remote AppleTalk networks. Each 
remote network contains an internet router that 
interconnects to the router attached to the other 

network through a long-distance communication 
link. This combination of two half-routers serves, in 
effect, as a single routing unit. 

hardware address: the unique node address that is 
determined by the physical and data-link layers of 
the network. 

header: the portion of a message, usually at the 
beginning of a packet, that contains control 
information, such as the source and destination 
addresses, packet-type identifiers, sequence 
numbers, and priority-level indicators. 

HFS: see hierarchical ftle system. 

hierarchical me system (HFS): the ftle system 
used on Macintosh hard disks and BOOK floppy disks. 

history bytes: two 8-bit bytes that are maintained 
by LLAP and that contain the number of times a 
node has deferred and the number of times it has 
sensed a collision in the last eight attempts to gain 
access to the link. These history bytes are used to 
determine the value of the random wait period. 

hop count: the number of internet routers that a 
datagram passes through en route to its destination; 
each internet router is counted as 1 hop. 

IDG: see interdialogue gap. 

IEEE 802.2: The Institute of Electrical and 
Electronics Engineers standard defining service 
interfaces and packet formats for data-link service. 

IFG: see interframe gap. 

interdialogue gap (IDG): the minimum 
separation time between dialogues; for LLAP, 400 
microseconds. 

interframe gap (IFG): the maximum separation 
time between frames of a single dialogue; for LLAP, 
200 microseconds. 

Glossary G-7 



International Standards Organization-Open 
System Interconnection OSO-OSI) reference 
model: a seven-layer network architecture reference 
model established by the ISO and adhered to by the 
CCITI. The OSI model is intended to provide a 
common basis for coordinating the development of 
standards aimed at systems interconnection, while 
allowing existing standards to be placed in 
perspective within a common framework. The 
model represents a network as a hierarchical 
structure of layers of function; it segments the data 
communication concept into seven layers and 
deftnes the functionality of each layer. Each layer 
provides a set of functions accessible to the layer 
above it. In the "open" philosophy, the services 
provided by one layer to another are strictly defined, 
but the manner used to provide the services is left 
open to interpretation. 

internet: one or more AppleTalk networks 
connected by intelligent nodes referred to as internet 
routers. 

internet router (IR): an intelligent node that 
connects AppleTalk networks and serves as the key 
component in extending the datagram delivery 
mechanism to an internet setting. An IR functions 
as a packet-forwarding agent to allow datagrams to 
be sent between any two nodes of an internet by 
using a store-and-forward process. AppleTalk 
internet routers fall into three categories: local 
routers, half routers, and backbone routers. 

internet socket address: the address of a socket in 
an AppleTalk internet. This address is made up of the 
socket number and the node ID and network 
number of the node in which the socket is located; 
the internet address provides a unique identifter for 
any socket in an AppleTalk internet. 

G-8 GLOSSARY 

IR: see internet router. 

ISO-OSI reference model: see International 
Standards Organization-Open System Inter
connection reference model. 

lAP: see Link Access Protocol. 

llnk: any data transmission medium shared by a set 
of nodes and used for communication among these 
nodes. 

Link Access Protocol (LAP): a link-level protocol 
that is responsible for the transmission of data 
across the physical link and ensures data integrity on 
this link. Sometimes called "data-link access 
protocol." The LocalTalk Link Access Protocol (LLAP) 
is the LAP protocol used in a LocalTalk environment. 

u.AP: see LocalTalk Link Access Protocol. 

u.AP type field: a 1-byte LLAP field that indicates 
packet type. Values in the range 1-127 ($01-$7F) 
indicate that the packet is a data packet; the type 
field speciftes the LLAP type of the client to whom 
the packet's data must be delivered. Values in the 
range 128-255 ($80-$FF) are reserved for control 
packets. 

local backoff mask: similar to the global backoff 
mask; the local backoff mask is used by LLAP to 
extend the time period between delivery attempts 
to a nonlistening node, thereby increasing that 
node's chances of receiving the packet. 

local router: an internet router used to connect 
AppleTalk networks that are in close proximity to 
each other; the local router is directly connected to 
each of the Apple Talk networks that it links. 

LocalTalk Link Access Protocol (Il.AP): the 
link-level protocol that manages node-to-node 
delivery of data in a LocalTalk environment. LLAP 
manages bus access, provides a node-addressing 



mechanism, and controls data transmission and 
reception, ensuring packet length and integrity. 

long name: the name used in AFP for a CNode (ftle 
or directory on a volume attached to a ftle seiVer) so 
that the CNode can be recognized by a Macintosh 
workstation. 

LSB: least-significant bit. 

maximum packet lifetime (MPL): the length of 
time that a packet is allowed to exist in the internet 
(for AppleTalk, approximately 30 seconds). 

missing clock: the detection and then absence of 
clocking information. Used by LLAP transmitters to 
synchronize their access to the bus. 

mount: the process of making a disk volume that is 
attached to a file server available to a workstation. 

MSB: most -significant bit. 

multicast hardware address: a destination 
hardware address common to a designated subset of 
nodes in a network; a packet with a multicast 
address as a destination is sent to all network nodes 
that can be identified by the multicast address. 
Multicast addresses facilitate directed broadcasts to 
a group of nodes. 

Name Binding Protocol (NBP): the AppleTalk 
transport-level protocol that translates a character 
string name into the internet address of the 
corresponding socket client; NBP enables AppleTalk 
protocols to understand user-defmed zones and 
device names by providing and maintaining 
translation tables that map these names to 
corresponding socket addresses. 

name-lookup process: the NBP process that binds 
the entity's name to its internet address. 

names directory (ND): a distributed database of 
entity-name to entity-internet-address mappings; 
the ND is the union of the individual names tables in 
all the nodes of an internet. 

names information socket (NIS): the NBP 
socket through which name lookup requests are 
received. 

names table: a table in each node that contains 
entity-name to entity-internet-address mappings 
(known as NBP tuples) of all named NVEs in the 
node. 

native file system commands: commands used 
to manipulate ftles on a diskette or other memory 
resource that is physically connected to a 
workstation. 

Native Filing Interface (NFI): the interface 
through which native file system commands are 
made; the NFI defmes the nature and format of 
parameters passed in and returned by the command. 

NBP: see Name Binding Protocol. 

ND: see names directory. 

network number: a 16-bit number used to indicate 
the AppleTalk network a node is connected to. 
Nodes choose their network number from within 
the network number range assigned to their 
network. 

network number range: the range of network 
numbers that are valid for use by nodes on a given 
AppleTalk network. 

network-specltlc broadcast: a broadcast intended 
only for those nodes with the indicated network 
number. 

Glossary G-9 



network-visible entity (NVE): resources that are within a frame; the control elements include a source 
addressable through a network. Typically, the NVE is address, a destination address, and possibly error-
a socket client for a seiVice available in a node. control information. 

network-wide broadcast: a broadcast intended for PAP: see Printer Access Protocol. 
all nodes on a given network. 

NFI: see Native Filing Interface. 

NIS: see names information socket. 

node: a data-link addressable entity on a network. 

node ID: see node identifier. 

node identifier (node ID): an 8-bit number that, 
when combined with the AppleTalk network 
number of a node, is used to uniquely identify each 
node on a network. 

nonextended network: an AppleTalk network that 
supports addressing of up to 254 nodes and supports 
only one zone. 

nonrouter node: a network node that does not 
function as an internet router. 

NVE: see network-visible entity. 

offspring: each CNode (ftle or directory in a volume 
catalog) is considered the offspring of the CNode 
direcdy above it in the catalog tree; the higher CNode 
is called the parent (or parent directory). 

open connection: an association that is set up 
between two sockets in which both ends have been 
established so that data can flow over the 
connection. 

open systems architecture: a hardware or 
software architecture that is well defined and whose 
specifications are publicly available, allowing others 
to substitute component parts or form 
interconnections to other architectures. 

packet: a group of bits, including data and control 
elements, that is transmitted together as a unit 

G-10 GLOSSARY 

parent (or parent directory): a directory is 
considered a parent to the CNode (file or directory) 
direcdy below it in the catalog tree; the lower CNode 
is called an offspring. The Parent ID is the Directory 
ID of the parent directory. 

password: a unique string of characters that a user 
(or program) must supply in order to gain access to a 
network (or to a specific resource within the 
network); passwords are frequently encrypted prior 
to transmission to ensure network security. 

pathname: the name of a CNode (ftle or directory) 
that specifies where the CNode belongs in the 
catalog tree. The pathname is formed by 
concatenating the directory names of all ancestor 
directories that make up the path. 

path type: indicates whether the elements of the 
associated AFP pathname are all short names or all 
long names. 

permissions: AFP access and deny modes that are 
used to regulate access to ftles. The AFP permission 
modes contribute to the synchronization rules that 
can prevent applications from damaging ftles 
through simultaneous access attempts. 

port descriptor: information fields used to 
describe a router port; these fields include a flag that 
indicates whether the port is connected to an 
AppleTalk network, the port number, the router's 
address corresponding to the port, and the network 
number range for the network to which the port is 
connected. 



Printer Access Protocol (PAP): the AppleTalk 
protocol that manages interaction between 
workstations and print servers; PAP handles 
connection setup, maintenance, and termination, as 
well as data transfer. 

print spooler: a hardware application or a 
software application (or both) that intercepts 
printable document files and that interacts with a 
printer to print the document, freeing the 
originating computer of this responsibility. 

probe: a packet sent requesting acknowledgment 
from the remote end of a connection; the probe 
itself serves as an acknowledgment to the remote 
end 

protocol: a set of procedural rules for information 
exchange over a communication medium; these rules 
govern the content, format, timing, sequencing, and 
error control of messages exchanged in a network. 

protocol address: the unique address that a node 
assigns to identify the protocol client that is to 
receive a packet for a particular protocol stack. An 
example of a protocol address is the 16-bit AppleTalk 
network number and 8-bit node ID protocol address 
that DDP and AARP use to verify that an incoming 
packet is intended for the particular DDP node. 

protocol family: a collection of related protocols 
that correspond to the layers of the ISO-OSI 
reference model and that together enable 
transmission and reception of packets over a 
network. The combination of all AppleTalk 
protocols is an example of a protocol family. 

protocol stack: a particular implementation of a 
protocol family within a node. 

provisional node address: the address used by a 
node in the process of selecting its network number. 

pseudorandom numbers: numbers picked via a 
mathematical process that approximates a truly 
random process. 

reception window size: the amount of buffer 
space that a connection end has available for 
receiving incoming data. 

reply block: the format of an AFP call that is sent 
from the me server to an AFP workstation client; 
the response to a command block. 

request block: the format of an AFP call that is 
sent from the AFP workstation client to the file 
server. 

request control block (RqCB): an information 
block that an A TP responder maintains for each call 
for receiving a request issued by its client; the RqCB 
contains information provided by the call, including 
all data pertinent to the buffers and to the client 
delivery mechanism. 

request-to-send (RTS) control packet: an LLAP 
packet sent to inform all nodes on the link of a 
node's desire to transmit a data packet and to 
request the destination node to send back a CfS 
control packet. 

response control block (BspCB): an information 
block that an ATP responder maintains in nodes 
implementing the exactly-once mode of operation; 
the RspCB holds the information required to filter 
duplicate requests and to retransmit response 
packets. 

root: the base or topmost directory in a volume 
catalog. 

router: see internet router. 

routing seed: the initial routing table set up by an 
internet router after it is first switched on. 

Glossary G-11 



routing table: a table, resident in each AppleTalk 
internet router, that serves as a mapping of the 
internet, specifying the path and distance (in hops) 
between the internet router and other networks. 
Routing tables are used to determine whether and 
where a router will forward a data packet. RTMP is 
used to update the routing tables. 

Routing Table Maintenance Protocol (RTMP): 
the AppleTalk protocol used to establish and 
maintain the routing information that is required by 
internet routers in order to route datagrams from 
any source socket to any destination socket in the 
internet. Using RTMP, internet routers dynamically 
maintain routing tables to reflect changes in internet 
topology. 

routing tuple: the last pan of an RTMP Data 
packet; routing tuples consist of two values: the 
destination network number or range and the 
distance, in hop counts, from the sending internet 
router to the destination network. 

RqCB: see request control block. 

RspCB: see response control block. 

RTMP: see Routing Table Maintenance Protocol. 

RTMP Stub: a process that listens on the RTMP 
socket in nonrouter nodes and that, upon receiving 
an RTMP Data packet, copies the packet's 
origination network number range and node address 
into two variables associated with the nonrouter 
node; the network number range is copied to THIS
NET-RANGE, and the node address (network 
number and node ID) is copied to A-ROUfER. 

RTS: see request -to-send. 

SAS: see statically assigned socket. 

SCC: see Zilog 8530 Serial Communications Controller. 

G-12 G L 0 S SA R Y 

SDLC: see Synchronous Data Link Control. 

seed router: an internet router in an Apple Talk 
network that has the network number range built 
into its port descriptor. Each AppleTalk network 
must have at least one seed router. This router will 
define the network number range for the other 
routers in that network. 

send transaction status (STS) bit: a bit in the 
header of an ATP TResp packet, requesting the 
receiver of that packet to resend the ATP TReq with 
the current bitmap. 

Serial Communications Controller (SCC): see 
Zilog 8530 Serial Communications Controller. 

server node IDs: one of two classes of node ID 
numbers; server node IDs fall within the range 
128-254 ($80-$FE) and are used by network servers 
(such as printers, spoolers, and file servers). 

servers: network nodes that provide a service to 
the other nodes in the network, such as shared 
access to a file system (a file server), control of a 
printer (a printer server), or storage of messages in a 
mail system (a mail server). 

server session socket (SSS): a socket in a server to 
which all session-related packets are sent. 

session: a logical connection between two network 
entities (typically, a workstation and a server) that 
facilitates establishment and maintenance of an 
exclusive dialog between the two entities. In an 
AppleTalk network, ASP can be used to establish, 
maintain, and tear down sessions; ASP also ensures 
that the commands transmitted during a session are 
delivered in the same order as they were sent and 
that the results of the commands are conveyed back 
to the originating entity. See connection. 



session identifier (session ID): an identification 
number associated with each session; the session ID 
is unique among all the sessions to the same server; 
since multiple workstations can have sessions to the 
same server simultaneously, ASP uses session IDs to 
distinguish between commands received in these 
various sessions. 

session Ustening socket (SIS): a socket in a 
server on which the server registers its name and 
listens for requests to open a session. 

session maintenance timeout: a timeout period 
that occurs when one end of a session determines 
that the other end is unreachable because it has been 
unresponsive; when the session maintenance 
timeout occurs, ASP closes the session. 

short DDP header: the DDP header type often 
used for packets whose source and destination 
sockets are within the boundaries of a single 
AppleTalk network. (An extended header is required 
for packets that are transmitted across network 
boundaries within an internet.) 

short name: the name used in AFP for a CNode (file 
or directory on a volume attached to a file server) so 
that the CNode can be recognized by an MS-DOS 
workstation. 

SLS: see session listening socket. 

SNAP: Sub-Network Access Protocol; used to 
distinguish between different protocol families 
using IEEE 802.2 packets. 

socket: an addressable entity within a node 
connected to an AppleTalk network; sockets are 
owned by software processes known as socket 
clients. AppleTalk sockets are divided into two 
groups, statically assigned sockets (SASs), which are 
reserved for clients such as Apple Talk core protocols, 

and dynamically assigned sockets (DASs), which are 
assigned dynamically by DDP upon request from 
clients in the node. 

socket client: a software process or function 
implemented in a network node. 

socket listener: code provided by a socket client to 
receive datagrams addressed to the socket. 

socket number: an 8-bit number that identifies a 
socket. A maximum of 254 different socket numbers 
can be assigned in a node. 

sockets table: a table that maintains an appropriate 
descriptor of each active socket listener in a node; 
the data structure for the sockets table is built and 
maintained by the code that implements DDP in the 
node. 

spooler/server: a combination of hardware and 
software that stores documents sent to it over a 
network and manages the printing of those 
documents on a printer. 

SSS: see server session socket. 

startup range: the range from which a node selects 
the network number part of its provisional address 
if it has no other network number saved. 

statically assigned socket (SAS): a socket that is 
permanently reserved for use by a designated 
process. In an AppleTalk network, SASs are the 
sockets numbered 1-127 ($01-$7F); they are reserved 
for use by specific socket clients and for low-level 
built-in network services. 

STS: see send transaction status bit. 

synchronization pulse: in LLAP, a transition period 
on the link that is followed by an idle period greater 
than 2 bit -times, resulting in a missing clock 

Glossary G-13 



indication in all receiving nodes. Used to synchronize 
access to the link. 

synchronization roles: rules used by flle servers to 
control simultaneous flle access. The synchron
ization rules used by AFP are based on a set of file
opening pennissions: an access mode and a deny 
mode. 

Synchronous Data Unk Control (SDLC): a data
link layer protocol for managing synchronous, code
transparent, serial-by-bit information transfer. SDLC 
transmission exchanges may be full duplex or half 
duplex over either a switched or nonswitched link. 
The configuration of the link may be point-to-point, 
multipoint, or loop. SDLC frame format is used in 
LocalTalk implementations. 

TCB: see transaction control block. 

TID: see transaction identifier. 

TokenTalk: Apple's data-link product that allows 
an AppleTalk network to be connected by token ring 
cables. 

TokenTalk Link Access Protocol (TLAP): the 
link-access protocol used in a TokenTalk network. 
TLAP is built on top of the standard token ring data
linklayer. 

transaction: an exchange of information between a 
source and a destination client that accomplishes a 
particular action or result. In an AppleTalk 
environment, A TP provides a transaction service 
that enables a source client's request to be bound to 
the destination client's response. 

traosaction bitmap: the field in an ATP TReq 
packet indicating which A TP TResp packets are 
being requested. 

transaction control block (TCB): an information 
block that the A TP requester must maintain for 

G-14 GLOSSARY 

retransmitting an A TP request and for receiving its 
responses. 

transaction identifier (TID): an identification 
number provided by ATP to bind together the 
request and response portions of a transaction. 

Transaction Release (TRel): an ATP packet sent 
in response to XO TResp, specifying that the entire 
response message was received; upon receiving the 
TRel, the transaction responder removes the RspCB. 

Transaction Request (TReq): an A TP packet sent 
to ask an ATP client to perform an action and to 
return a response. 

Transaction Response (TResp): an A TP packet 
sent in response to a TReq, specifying the results of 
the requested operation. 

transactions list: a list that the ATP responder 
maintains of all the recently received transactions; 
this list is used to implement XO transaction service. 

TRel: see Transaction Release. 

TReq: see Transaction Request. 

TResp: see Transaction Response. 

UAM: see user authentication method. 

user authentication method (UAM): any 
procedure used by a server and workstation by 
which the server is convinced of the user's identity. 

user name: a string of characters that uniquely 
identifies a user for login purposes; the user name is 
entered by the user and confirmed in a user
authentication database before the user is permitted 
to gain access to the network resource. 

user node IDs: one of two classes of node ID 
numbers; user node IDs fall within the range 1-127 
($01-$7F) and are generally used by workstations. 



volume: a ftle storage unit. Each disk attached to an 
AppleTalk ftle server is considered a volume, 
although some disks may contain multiple volumes. 

volume catalog: a tree-structured catalog of the 
ftles and directories on a volume. 

Volume ID: a session-unique value assigned by a ftle 
server to each of its volumes; AFP calls use the 
Volume ID to specify the desired volume. 

volume signature: a 2-byte fteld in AFP calls that 
identifies the volume type; volumes are of three 
possible types: flat, ftxed Directory ID, or variable 
Directory ID. 

workstation session socket (WSS): a socket in a 
workstation to which all session-related packets are 
sent. 

WSS: workstation session socket. 

XO transaction: see exactly-once transaction. 

Zllog 8530 Serial Communications Controller 
(SCC): an integrated circuit commonly used to 
provide controller services in an LLAP 
implementation. 

ZIP: see Zone Information Protocol. 

ZIP btingback time: a specified amount of time 
after a network is brought down in which the 
network can be brought up again with a new zone 
name. 

ZIS: see zone information socket. 

m: see zone information table. 

zone: an arbitrary subset of the nodes within an 
internet. 

Zone Information Protocol (ZIP): the 
AppleTalk session-layer protocol that is used to 
maintain and discover the internet-wide mapping of 
network number ranges to zone names; ZIP is used 
by NBP to determine which networks contain nodes 
which belong to a zone. 

zone information socket (ZIS): the statically 
assigned socket (SAS) in each internet router to 
which nodes address requests for zone information 
and through which the internet router responds to 
those requests. 

zone information table (ZIT): a complete 
network-range-to-zones-list mapping of the 
internet maintained by each internet router in an 
AppleTalk internet. 

zone multicast address: a data-link-dependent 
multicast address at which a node receives the NBP 
broadcasts directed to its zone. 

zones list: specifies the zone names that can be 
chosen by nodes on the network. 

Glossary G-15 



Index 

A 
MRP. See AppleTalk Address 

Resolution Protocol (MRP) 
abort sequence Ll.AP 1-9 
access modes AFP 13-35 
access privileges 1-18 
Acknowledge control packet (Ll.AP) 

1-4, 1-5 
AckRequest bit 12-12 
AcquireAddress procedure B-7 
ActLenWritten 11-26 
ActRcvdReqLen 11-18 
addresses 1-13. See also address 

mapping; Name Binding 
Protocol (NBP) 

filter of 12-37 
hardware address 2-4 
protocol address 2-3 
resolution of 2-3 

address mapping. See also Address 
Mapping Table (AMT) 

in EtherTalk Link Access Protocol 
(EIAP) 3-7 to 3-10 

in TokenTalk Link Access 
Protocol (TIAP) 3-7 to 3-10 

Address Mapping Table (AMT) 2-7 
entry aging 2-10 to 2-11 
gleaning with 2-10 

Adobe PostScript Document 
Structuring Conventions 
14-22 

Adobe Systems 14-18 
ADSP. See AppleTalk Data Stream 

Protocol (ADSP) 

AEP. See AppleTalk Echo Protocol 
(AEP) 

AFP. See AppleTalk Filing Protocol 
(AFP) 

AFP-ftle-system-visible entities 13-6 
AFP translator 13-5 
AFPVersion strings 13-28 
aging entries 

of A-ROUTER 5-19 
on AMT 2-10 to 2-11 
for DDP routing algorithm 4-20 
routing table entries 5-12 to 5-13 
zone names 8-10 

aliases of entity 7-4, 7-6 
AlisaShare 1-15 
ALO transactions 9-5 
alternate spooling environments 

14-10 to 14-11 
AMT. See Address Mapping Table 

(AMT) 
ancestors of CNodes 13-12 

pathnames for 13-24 
Apple II, AFP supporting 13-6 
AppleiiGS, LocalTalk and 1-10 
AppleShare 1-15, 1-17 to 1-20, 1-26 
Apple Talk 

connectivity 1-9 to 1-15 
file service 1-17 to 1-20 
goals of 1-6 to 1-7 
Phase 2 of I-24 
printing services 1-15 to 1-17 

AppleTalk Address Resolution 
Protocol (MRP) 1-11. See 
also protocol address; 
protocol stack 

broadcast defmed 2-7 
Ethernet and 3-11 to 3-12 
EtherTalk Link Access Protocol 

(EIAP) and 3-2, 3-8 to 3-9 
filtering incoming packets 2-9 
formats for packets 2-11 to 2-12 
gleaning 2-10 
mapping addressses by 2-7 to 

2-8 
operation of 2-6 to 2-9 
parameters for C-4 
queries for mapping 2-6 
request packets 2-7 
response packets 2-7 to 2-8 
retransmission of packets 2-9 to 

2-10 
services 2-5 to 2-6 
token ring and 3-11 to 3-12 
TokenTalk Link Access Protocol 

(TIAP) and 3-2, 3-8 to 3-9 
verifying packet address 2-10 

AppleTalk Data Stream Protocol 
(ADSP) 1-14 to 1-15. See also 
opening connections 

attention packets 12-19 to 12-22 
closing connections 12-38 to 

12-39 
connections with 12-4 to 12-6 
control packets 12-14 to 12-15 
data flow for 12-6 to 12-11 
error recovery for 12-7 to 12-8 
examples of data-flow 12-15 to 

12-19 
flow control witl1 12-8 to 12-9 

Index-1 



AppleTalk Data Stream Protocol 
(continued) 

forward reset mechanism 12-9 to 
12-10 

idle connection state, example of 
12-18 

lost packets, recovery of 12-16 to 
12-17, 12-19 

messages on 12-9 
packet formats 12-12 to 12-13 
parameters for C-13 
probe packets 12-14 
sequence numbers with 12-7 
services 12-4 
summary of sequencing 

variables 12-10 to 12-11 
tom down connection due to 

lost packets 12-19 
AppleTalk Echo Protocol (AEP) 6-1 

to 6-4 
packet format 6-3 
parameters for C-9 

AppleTalk Filing Interface (AFI) 13-5 
to 13-6 

AppleTalk Filing Protocol (AFP) 
1-19 to 1-20, 13-1 to 13-146 

abbreviations for call descriptions 
13-47 

access modes 13-35 
algorithms with 13-6 
AppleTalk Session Protocol (ASP) 

with 13-38 to 13-39 
calls 13-46 to 13-146 
descriptions of calls 13-47 
Desktop database 13-37 to 13-38 
directories 13-15 to 13-22 
me access model 13-5 
me calls 13-43 
me servers and 13-8 to 13-9, 

13-28 to 13-34 
ftle sharing modes 13-35 
me system structure 13-7 to 13-23 
fork calls 13-44 
login 13-27 to 13-28 

Index-2 

names, syntax for forming 13-13 
to 13-14 

overview of calls 13-39 to 13-46 
parameters for C-13 to C-16 
pathnames 13-24 
permissions 13-35 
protocol architecture and 13-7 
server calls 13-40 to 13-41 
system component parts 13-6 
Version 1.0 13-7 
versions of 13-7 
volume calls 13-41 
volumes for 13-9 to 13-13 
workstation program 13-5 

AppleTalk Internet Router in 
AppleTalk Phase 2 1-24 

AppleTalk node ID 4-6 
AppleTalk Session Protocol (ASP) 

1-14, 11-1 to 11-35 
AppleTalk Echo Protocol (AEP) 

and 6-4 
AppleTalk Filing Protocol (AFP) 

using 13-27, 13-38 to 13-39 
attention packet formats 11-35 
client interface 11-16 to 11-26 
description of 11-4 
duplicate mtration in 11-14 
features of 11-5 
getting server status 11-29 to 

11-30 
limits of 11-4 to 11-5 
maintaining sessions in 11-9, 

11-35 
opening a session 11-27 to 11-29 
open session commands 11-10 

to 11-14 
packet formats 11-27 to 11-35 
parameters for C-12 to C-13 
sending command request 

11-30 to 11-32 
sequencing in 11-14 
server, session-closing dialog 

initiated by 11-8 

server-end calls, client interface 
for 11-16 to 11-22 

services of 11-5 
service status information 11-15 
tickle packets 11-9 11-35 
workstation, session-closing 

dialog initiated by 11-7 
workstation-end calls 11-23 to 

11-26 
write request, sending a 11-32 to 

11-34 
AppleTalk Transaction Protocol 

(ATP) 1-14, 9-1 to 9-28. See 
alsoTIDs 

AppleTalk Echo Protocol (AEP) 
and 6-4 

at -least -once (ALO) transactions 
9-5 

ATP requester 9-22 to 9-23 
ATP responder 9-24 to 9-25 
bitmap 9-10 to 9-12 
calls in ATP interface 9-16 to 9-20 
closing responding socket call 

9-19 
control information ( CI) byte 

9-13 
duplicate transaction-request 

ftltering 9-6 
exactly-once (XO) transactions 

9-6 to 9-9 
idempotent transactions 9-5 
interface 9-16 to 9-20 
limited buffer space 9-12 to 9-13 
multipacket responses 9-9 
nonspooler printing with 14-8 
opening responding socket call 

9-18 
optional interface calls 9-26 to 

9-27 
packet format 9-13 to 9-15 
parameters for C-10 
receiving request call 9-19 
request control block (RqCB) 

9-21 



response control block (RspCB) 
9-21 

send transaction status (STS) bit 
9-12 to 9-13 

sending response call 9-20 
sequence number 9-10 to 9-12 
state model 9-21 to 9-25 
terminology of transactions 9-4 
transaction control block (TCB) 

9-21 
transactions 9-3 to 9-9 
wraparound ofTIDs 9-27 to 9-28 
ZIP ATP requests 8-13 to 8-15 

arbitration (ARB), PAP server in 10-7 
architecture, open I-7 
A-ROUTER 4-19 

aging of 5-19 
name lookup and 7-10 

ASCII deftnitions 7-5 
ASP. See AppleTalk Session Protocol 

(ASP) 
at-least-once (ALO) transactions 9-5 
AtnSendSeq 12-21 
ATP. See AppleTalk Transaction 

Protocol (ATP) 
ATP requester 9-22 to 9-23 
ATP responder 9-24 to 9-25 
attention messages 12-12, 12-19 to 

12-22 
AttnRecvSeq field 12-27 
automatic retry mechanism 9-5 
Aux Type 13-18 to 13-20 

B 
backbone routers 5-4 
background spoolers 1-16, 14-Q 
BackupNeeded bits 13-21 
best router forwarding algorithm 

4-20 
binding procedure 7-8 
bit encoding and decoding A-2 
bitmaps 

in ATP 9-10 to 9-12 

order 13-47 
bit stuffing 1-9 
Body comments 14-29 
broadcast address 1-5, C-5 

protocol address 2-4 
broadcast ID 2-4 
broadcast packets 1-5, 1-10 

transmission of 1-15 
broadcast transmission dialog 1-10 
BrRq packet 7-14 to 7-17 
buffers, ASPGetRequest call to 

provide 11-18 
BufrooSmall error 11-18, 11-23 

c 
cable connection for LocalTalk A-5 
cabling methods I-9 
carrier sense A-3 

sense defined 1-3 
in LocalTalk Link Access Protocol 

(LLAP) 1-10 
Carrier Sense Multiple Access with 

Collision Avoidance 
(CSMA/CA) 1-3 

character codes D-1 to D-3 
checksums for Datagram Delivery 

Protocol (DDP) 4-17 
cleartext password ( Cleartxt Passwrd) 

13-29 
for spoolers 14-13 

Close Connection Advice Control 
packet 12-38 to 12-39 

CloseConn packet format 10-14 
CloseConnReply 10-11 

packet format 10-14 
closed connection 12-5 
CloseSess packet format 11-28 to 

11-29 
CmdBlock, in SPCommand call 

11-10, 11-31 to 11-32 
CmdBlockSize 11-25, 11-26 
CmdReplyDataSize 11-19 
CmdResult field 11-10, 13-38 

CNodes 13-12 
designating path to 13-23 to 

13-26 
Directory IDs and 13-16 
examples of paths 13-26 
names 13-13 to 13-15 

coding, bit A-2 
collisions 

avoidance defmed 1-3 
RTS-crs handshake 1-13 

command reply data block 
(CmdBlock) 11-10, 11-31 to 
11-32 

command result (CmdResult) 
11-10, 13-38 

comments. See also query 
comments 

Body comments 14-29 
Creation Date comment 14-26 
Creator comment 14-26 
documents, comments in 14-22 

to 14-23 
End-Of-File comment 14-33 
Exit Server comments 14-29 
Feature Query comments 14-37 
File Query comments 14-37 
Font Query comments 14-38 
For comment 14-27 
format of 14-20 
Global Query comments 14-39 
Include Procedure Set comment 

14-33 to 14-34 
Job Identification comment 

14-27 
Page Marker comment 14-30 
Printer Query comments 14-39 
Procedure Set comments 14-30 

to 14-31 
Procedure Set Query comments 

14-40 
resource comments 14-32 to 

14-34 
structure comments 14-23 to 

14-25 

Index-3 



comments (continued) 
syntax for 14-21 
Title comment 14-28 
Trailer comment 14-31 to 14-32 
Virtual Memory Status Query 

comments 14-40 to 14-41 
computing components 1-4 
confirmation of names 7-8 

call for 7-13 
connection identifier (ConniD) 10-7 

ADSP and 12-6 
connection-listening sockets 12-35 

to 12-36 
connection-opening ftlters with 

12-37 to 12-38 
connection-opening filters 12-36 to 

12-38 
connections. See also half-open 

connections; opening 
connections 

ADSP connections 12-4 to 12-6 
closed connection 12-5 
closing of 12-38 to 12-39 
connection-opening filters 12-36 

to 12-38 
defmed 10-7 
end 12-4 
LocalTalk connection module 

A-4 
connectivity 

of AppleTalk 1-9 to 1-15 
components 1-4 

ConniDMax 12-6 
Consultative Committee on 

International Telephone and 
Telegraph (CCITI) 1-9 

control information (Cl) byte 9-13 
control packets 

ADSP control packets 12-14 to 
12-15 

Open Connection Request 
Control packet format 12-27 
to 12-29 

Copy-in-Tuples routine 5-24 

Index-4 

CopyProtect bits 13-21 
CRC-CCITT 1-9, B-22 
Create-New-Entry routine for RTMP 

5-23 
Creation Date comment 14-26 
Creator comment 14-26 
cyclic-redundancy check (CRC) 

algorithm 1-9 

D 
Datagram Delivery Protocol (DDP) 

4-1 to 4-21. See also AppleTalk 
Echo Protocol (AEP); internet 
routers; Routing Table 
Maintenance Protocol 
(RTMP) 

AppleTalk node address 
acquisition 4-7 to 4-9 

best router forwarding algorithm 
4-20 

checksum computation 4-17 
comparing two networks 4-21 
extended DDP header 4-9 to 

4-11, 4-14 to 4-15, 4-16 
hop counts 4-17 
interface 4-10 to 4-11 
internal algorithm 4-13 
LocalTalk Link Access Protocol 

(LLAP) and 1-8 
and network-visible entities 

(NVE) 7-4 
node IDs for 4-6 to 4-7 
packet format 4-14 to 4-17 
parameters for C-6 to C-8 
router internals and 5-7 
routing algorithm 4-18 to 4-20 
short DDP header 4-14, 4-15 
socket listeners 4-10 
sockets 4-5 
socket values for C-7 to C-8 
type field 4-9 

data-link methods 1-9 

data packets 
LocalTalk Link Access Protocol 

(LLAP) using 1-8 
transmission of 1-10 to 1-15 

data stream for ADSP 12-6 to 12-11 
data transparency 1-9 
date time values 13-21 to 13-22 
DDP. See Datagram Delivery 

Protocol (DDP) 
decoding bit A-2 
default zones 8-5 
deferring nodes 1-11 
Deletelnhibit bit 13-21 
deletion of names 7-8 

call for 7-12 
deny modes 13-35 
descendents of CNodes 13-12 
Desktop database 13-37 to 13-38 

overview of calls 13-45 to 13-46 
destination sockets 9-2 
directed data packets 1-11 

transmission of 1-14 
directed transmission dialog 1-11 
director access control 13-31 to 

13-34 
directories 13-10 

access control 13-31 to 13-34 
AFP directories 13-15 to 13-22 
attributes of 13-17 
combined directory-me calls 

13-43 
enumerating 13-33 
overview of calls 13-42 
parameters of 13-16 to 13-17 

directory access control, parameters 
of 13-32 

Directory IDs 13-10 to 13-12 
AFP 13-15 to 13-16 
overview of calls 13-42 

direct passthrough connections 
14-14 to 14-15 

direct printing I-16 
document structuring conventions 

14-18 to 14-19 



duplicate transaction-request mtering 
9-6 

of exactly-once (XO) transactions 
9-8 

PAP transactions 10-11 
dynamically assigned sockets (DASs) 

4-5 
opening of 4-12 

dynamic node lD assignment 1-3 to 
1-6 

dynamic protocol address 
assignment 2-8 to 2-9 

E 
Echoer socket. See AppleTalk Echo 

Protocol (AEP) 
Echo Request packet 6-4 
EIA RS-422 signaling standard A-3 
802.2 standard 3-3 
electromagnetic interference (EMI) 

A-3 
End-Of-File comment 14-33 
end of message (EOM) 

in ADSP 12-9, 12-12 
in ATP 9-10 to 9-12 
in PAP 10-10 

end-user services I-15 to I-20 
Enquiry control packet (Ll.AP) 1-4, 

1-5 
entity identifier for ASP 11-6 
entity names 7-4 to 7-5 
entity not found error 7-8 
entity types 7-4 
entry state 5-8 
enumerating directories 13-33 
enumerator value 7-6 
error recovery 

for ADSP 12-7 to 12-8 
in connection opening dialog 

12-30 to 12-34 
errors 

BufTooSmall error 11-18, 11-23 

LocalTalk Link Access Protocol 
(LW) transmission 1-16 

SizeErr 11-25 11-19 
SPError values 11-18, 11-24 

Ethernet. See also EtherTalk Link 
Access Protocol (ELAP) 

AARP packets on 3-11 to 3-12 
ELAP packet formats 3-5 to 3-6 

EtherTalk I-11. See also EtherTalk 
Link Access Protocol (EW) 

AARP values used for C-4 
AppleTalk Internet Router I-24 
as extended network 4-7 
installation of I -9 
parameters for C-4 to C-5 

EtherTalk Link Access Protocol 
(EW) I-11, 3-1 to 3-12 

address mapping in 3-7 to 3-10 
802.2 standard and 3-3 
node IDs for 3-9 
packet format 3-5 to 3-6 
zone multicast addresses used by 

3-10 
exactly-once (XO) transactions 9-6 

to 9-9 
ASP and 11-14 
duplicate delivery of 9-8 
limited buffer space and 9-12 to 

9-13 
PAP transactions and 10-10 

Exit Server comments 14-29 
jobs 14-20 
sample print streams for 14-43 

extended DDP header 4-9 to 4-11, 
4-14 to 4-15,4-16 

extended networks 4-7 
node address acquisition on 4-8 

to 4-9 
nodes on 5-19 to 5-20 
routing tuples for 5-16 

extended ZIP reply packets 8-6 

F 
Feature Query comments 14-37 
me calls 13-43 

combined directory-me calls 
13-43 

File Query comments 14-37 
files 

AFP mes 13-15 to 13-22 
forks 13-22 to 13-23 
parameters 13-17 to 13-18 

me servers 
AFP and 13-7, 13-8 to 13-9 
security 13-28 to 13-34 

me sharing modes 13-35 
Finder, Desktop database with 13-38 
FirstRtmtSeq 12-8 

resetting value of 12-10 
sumrrtary of 12-11 

fiXed Directory ID volume 13-11 
flag byte 1-9 

in frame preambles 1-11 
LocalTalk detecting 1-10 

flow control with ADSP 12-8 to 12-9 
flow quantum 10-7 
flushing flies in ASP 11-8 
FM-0 A-2 
folders I-18 
Font List Query comments 14-38 
For comment ·14-27 
fork calls 13-44 
forks me 13-22 to 13-23 
Forward Reset Acknowledgment 

Control packet 12-10, 12-15 
Forward Reset Control packet 12-10, 

12-15 
forward reset mechanism of ADSP 

12-9 to 12-10, 12-15 
FPAddAPPL call 13-49 to 13-50 
FPAddComment call 13-51 to 13-52 
FPAddicon call 13-53 to 13-54 
FPByteRangeLock call 13-55 to 13-57 
FPCall 13-48 

Index-5 



FPChangePassword call 13-58 to 
13-59 

FPCioseDir call 13-60 
FPCioseDT call 13-61 
FPCioseFork call 13-62 
FPCioseVol call 13-63 
FPCopyFile call 13-64 to 13-66 
FPCreateDir call 13-67 to 13-68 
FPCreateFile call 13-69 to 13-70 
FPDelete call 13-71 to 13-72 
FPEnumerate call 13-39, 13-73 to 

13-76 
FPError 13-38 
FPFiush call 13-77 
FPFiushFork call 13-78 
FPGetAPPL call 13-79 to 13-80 
FPGetComment call 13-81 to 13-82 
FPGetFileDirParms call 13-83 to 

13-88 
FPGetForkParms call 13-89 to 13-90 
FPGetlcon call 13-91 to 13-92 
FPGetlconlnfo call 13-93 to 13-94 
FPGetSrvrlnfo call 13-28, 13-38, 

13-40, 13-95 to 13-97 
FPGetSrvrParms call 13-30, 13-40, 

13-98 to 13-99 
FPGetUserlnfo call 13-100 to 13-101 
FPGetVo!Parms call 13-102 to 

13-103 
FPLogin call 13-104 to 13-105 
FPLoginCont call 13-3, 13-40, 

13-106 to 13-107 
FPLogout 13-39 
FPLogout call 13-108 
FPMapiD call 13-109 
FPMapName call 13-110 
FPMoveAndRename call 13-111 to 

13-113 
FPOpenDir call 13-11, 13-114 to 

13-115 
FPOpenDT call 13-116 
FPOpenFork call 13-35, 13-117 to 

13-120 

Index-6 

FPOpenVol call 13-31, 13-121 to 
13-122 

FPRead call 13-39, 13-123 to 13-125 
FPRemoveAPPL call 13-126 to 

13-127 
FPRemoveComment call 13-128 to 

13-129 
FPRename call 13-130 to 13-131 
FPSetDirParms call 13-132 to 13-134 
FPSetFileDirParms call 13-135 to 

13-137 
FPSetFileParms call 13-138 to 13-140 
FPSetForkParms call 13-141 to 

13-142 
FPSetVolParms call 13-143 to 13-144 
FPWrite call 13-39, 13-145 to 13-146 
frame check sequence 1-9 
frame preamble 1-9 

flag bytes in 1-11 
in LLAP 1-9 

frame trailer 1-9 
fully specified names 7-5 
FwdReq packet 7-10,7-14 to 7-17 

in ZIP 8-19 

G 
gateways 1-26 
generation ofTIDs 9-27 to 9-28 
GetLoca!Zones 8-7 to 8-8 

packet formats 8-13 to 8-15 
GetMyZone 8-7 to 8-8 

packet formats 8-15 
GetNetlnfo request 4-9, 8-9 

ZIP packet formats 8-16 to 8-17 
GetNext]ob call 10-4, 10-5 

description of 10-20 
queuing of calls for 10-11 
WaitTime for 10-8 

GetStatus packet 11-29 to 11-30 
GetStatus Reply packet 11-29 
GetZoneList 8-7 to 8-8 

packet formats 8-13 to 8-15 
GetZoneListReply 8-13 

gleaningwithAARP 2-10 
global backoff mask B-9 to B-10 
global constants for LLAP B-2 to B-4 
Global Query comments 14-39 
guests I-17 

H 
half-open connections 

with ADSP 12-5 
data transfer phase detecting 10-9 

to 10-10 
opening connection error 

recovery with 12-31 to 12-33 
PAP handling cases of 10-5 

half routers 5-4 
hardware. See also hardware address 

interface declarations B-4 to B-5 
specifications A-1 to A-8 

hardware address 2-4 
broadcast hardware address 1-5 
protocol address translated to 

2-6 
request packets and 2-7 
response packets and 2-7 to 2-8 

header comments 14-25 to 14-26 
HeresStatus call 10-12 
hierarchical file system (HFS) 1-20 
history bytes 1-13 
hop counts 4-17 
hops 5-8 

I 

idempotent transactions 9-5 
idle-connection state example 12-18 
Image Writers 

end-user services with I-15 
MS-DOS computers and 1-19 

Include Procedure Set comment 
14-33 to 14-34 

initialization of RTMP tables 5-21 
InitializeLLAP procedure B-6 



Institute of Electrical and Electronics 
Engineers (IEEE) 3-3 

interdialog gaps (JOG) 1-11 
interface I-22 

AFI interface 13-5 to 13-6 
ASP client interface 11-16 to 

11-26 
LI..AP interface B-5 to B-6 
PAP client interface 10-16 to 

10-20 
interframe gaps (IFG) 1-11 
internet routers (IRs) 4-3, 5-4 to 5-5 

backbone routers 5-4 
defmed 4-5 
diagram of 4-4 
half routers 5-4 
local routers 5-4 
router model 5-6 to 5-7 
Zone Information Protocol (ZIP) 

and 8-18 to 8-20 
intemets I-9. See also internet 

routers (IRs) 
ASP and 11-14 
Name Binding Protocol (NBP) 

on 7-10 to 7-11 
name lookup on 7-10 to 7-11 
routers and I-12 to 1-13 
Routing Table Maintenance 

Protocol (RTMP) and 5-7 
routing tuple for 5-16 
socket address 4-6 
zones lists and 8-22 

interpersonal computing I-5 
IRs. See internet routers 
ISO-OS! reference model I-20 to 

I-23 

J 

protocol family 2-3 
protocol stack 2-3 

job Identification comment 14-20, 
14-22, 14-27 

L 
LANSTAR AppleTalk I-9 
LaserShare print spooler 14-36 
LaserWriters 

end-user services with I-15 
LocalTalk and 1-10 
MS-DOS computers and I-19 
PostScript to 14-7 
spooler/servers and I-17 

LastConnlD 12-6 
LastFlag 8-15 
late-arriving duplicates, connection 

opening dialog with 12-33 to 
12-34 

Line Length comment 14-23 
link independence I-7 
LkUp packet 7-9, 7-14 to 7-17 

ZIP converting FwdReq to 8-19 
to 8-20 

LkUp-Reply packet 7-14 to 7-17, 7-9 
LLAP. See LocalTalk Link Access 

Protocol (LLAP) 
local backoff mask B-9 to B-10 
local routers 5-4 

AppleTalk node address of 5-7 
LocalTalk. See also LocalTalk Link 

Access Protocol (LLAP) 
access through I-19 
AppleTalk Internet Router I-24 
cable connection A-5 
carrier sense A -3 
connection module A-4 
connectivity with 1-10 to I-11 
connectors A-5 
electrical characteristics A-2 to 

A-3 
electrical/ mechanical 

specifications A-3 to A-5 
environmental conditions A-8 
hardware specifications for A-1 

toA-8 
installation of I -9 

mechanical strength of 
transformer A-8 

signal transmission A-3 
transformer specifications A-5 to 

A-8 
LocaiTalk Link Access Protocol 

(LLAP) 1-1 to 1-16 
access control algorithms, 

appendix of B-1 to B-22 
acknowledge control packet 1-4, 

1-5 
AcquireAddress procedure B-7 
appendix for access control 

algorithms B-1 to B-22 
assumptions concerning B-2 
CRC-CCITT calculation B-22 
data packets 1-8 
data transparency with 1-9 
dynamic node ID assignment 

1-3 to 1-6 
Enquiry control packet 1-4, 1-5 
frame 1-9 
frame parameter for C-3 
global backoff mask B-9 to B-10 
global constants for B-2 to B-4 
goalsof l-10tol-11 . 
hardware interface declaratiOns 

B-4 to B-5 
InitializeLLAP procedure B-6 
interface procedures and 

functions B-5 to B-6 
LLAP packets 1-6 to 1-8 
local backoff mask B-9 to B-10 
misceUaneous functions B-19 to 

B-20 
node addressing with 1-3 to 1-6 
parameters for C-2 to C-3 
ReceiveFrame function B-17 to 

B-19 
ReceiveLinkMgmt function B-15 

to B-17 
ReceivePacket procedure B-15 
reception of packets 1-15 to 1-16 
RTS-CTS handshake 1-13 

Index-7 



Loca!Talk Unk Access Protocol 
(continued) 

synchronization pulse 1-10 
timing constant for C-3 
transmission dialogs 1-10 to 1-15 
transmission of data packets 1-10 

to 1-15 
TransmitFrame procedure B-14 
TransmitLinkMgmt function B-8 

to B-13 
TransmitPacket function B-8 
type fields 1-Q to 1-8 

Logical Unk Control (LLC) 3-3 
login process, AFP login 13-27 to 

13-28 
long name of catalog 13-13 to 13-14 
lookup of names. See name lookup 
lost packets 

ADSP recovery of 12-16 to 12-17, 
12-19 

open connection procedures for 
12-24, 12-30 to 12-31 

lowercase-to-uppercase mapping 
D-3 

M 
Macintosh 

AFP supporting 13-6 
Desktop database for 13-38 
interpersonal computing with 

1-5 
printing, impact on 14-Q to 14-7 
variable Directory ID volumes 

use of 13-11 
mapping 

of characters D-1 to D-3 
for Desktop database 13-38 

MaxCmdSize 11-16, 11-25, 11-26 
maximum packet lifetime (MPL) 9-9 

to 9-10 
ADSP and 12-Q 

modulo function 8-18 
mounting volumes 13-12 

Index-8 

MS-DOS 
me forks with 13-22 
LocalTalk PC Card access to 1-10, 

I-19 
multicast addresses 2-4 

ELAP using 3-10 
TLAP using 3-10 

multicasting. See zone multicasting 
multipacket responses 9-9 
multiple access defined 1-3 

N 
name already taken error 7-9 
name binding, of CNodes 13-13 to 

13-15 
Name Binding Protocol (NBP) 1-14, 

7-1 to 7-17. See also 
confmnation of names; 
deletion of names; name 
lookup; registration of names 

AFP login and 13-27 
aliases 7-4, 7-Q 
and statically assigned sockets 

(SASs) 4-5 
AppleTalk Echo Protocol (AEP) 

and 6-4 
ASP and 11-5 
calls used with 7-11 to 7-13 
confirmation of names 7-8 
deletion of names 7-8 
entity names 7-4 to 7-5 
entity not found error 7-8 
enumerator value 7-Q 
function of packets 7-15 
ID in packets 7-15 
interface 7-11 to 7-13 
on internet 7-10 to 7-11 
multicast addresses and 3-10 
name binding 7-5 to 7-7 
names directory (ND) 7-6 
names information socket (NIS) 

7-7 
network-visible entities (NVE) 7-4 

opening connection dialogs 
using 12-24 

packet formats 7-14 to 7-17 
parameters for C-9 
registration of name 7-7 
routers including 5-7 
services 7-7 to 7-8 
on single network 7-9 
tuples in packets 7-15 to 7-17 
zones, use of 7-10 

name lookup I-1 4, 7-8 
call for 7-13 
on internet 7-10 to 7-11 

names I-13. See also Name Binding 
Protocol (NBP) 

user names I-17 
names directory (ND) 7-Q 
name servers I-14 
names information socket (NIS) 7-7 
names table 7-Q 
National Bureau of Standards Data 

Encryption Standard (NBS 
DES) 13-30 

native me system commands 13-5 
Native Filing Interface (NFI) 13-5 
NBP. See Name Binding Protocol 

(NBP) 
NBP name-address tuples 7-Q 
network system 1-8 to I-20 
network addresses, ftlter of 12-37 
network numbers 1-13, 4-6 

assignment of ranges 5-16 to 5-17 
equivalences 4-21 
on extended network 4-7 
RTMP Data packet including 

5-15 
network-specific broadcast 4-Q 
network-visible entities (NVE) 7-4 
network-wide broadcast 4-Q 
NFS, Sun Microsystem I-19 
NIL field 8-6 

zones lists and 8-20 to 8-21 



node address 
Datagram Delivery Protocol 

(DDP) acquiring 4-7 to 4-9 
extended networks and 4-8 to 

4-9 
LocalTalk Link Access Protocol 

(LLAP) and 1-3 to 1-0 
protocol address as 2-3 

node IDs 
AppleTalk node ID 4-0 
for Datagram Delivery Protocol 

(DDP) 4-6 to 4-7 
for ELAP 3-9 
for LLAP 1-4 
for TI.AP 3-9 
RTMP Data packet including 

5-15 
nodes 

defmed I-9 
protocol address of 2-4 
protocol stacks with 2-3 
zone name changes in 8-22 

no more zones message 8-8 
nonextended networks 4-7 

DDP routing algorithm for 4-18 
node address acquisition on 4-8 
routing tuples for 5-16 

nonrouter nodes 5-17 to 5-20 
no such entity result 7-9 
notify neighbor technique 5-12 
NoUserAuthent 14-13 
no user authentication (No User 

Authent) 13-29 
NoUserLogin 14-13 

0 
offspring of CNodes 13-12 
OForkRefNum 13-23 
open architecture I-7 
OpenConn 10-7, 10-8 

packet format 10-13 
Open Connection Acknowledgment 

12-18, 12-27 

Open Connection Denial Control 
packet 12-27 to 12-28 

Open Connection Request Control 
packet 12-23 to 12-27 

OpenConnReply 10-7, 10-9 
packet format 10-13 

opening connection 12-5, 12-22 to 
12-24 

both-end initiated connection 
opening dialog 12-26 

connection-opening filters 12-36 
to 12-38 

control packets 12-27 to 12-29 
denial of request to open 

connection 12-27 
dialogs for 12-24 to 12-27 
error recovery in 12-30 to 12-34 
half-open connections, error 

recovery with 12-31 to 12-33 
late-arriving duplicates 12-33 to 

12-34 
lost packets, recovery of 12-30 to 

12-31 
one-end initiated connection 

opening dialog 12-25 
outside ADSP 12-34 to 12-35 
packet formats for 12-27 to 12-29 
parameters for 12-22 
simultaneous connection 

opening dialog with lost 
packet 12-30 to 12-31 

transmission of data on 
half-open connection 12-32 
to 12-33 

OpenSess packet 11-6 to 11-7, 11-27 
to 11-29 

OpenSessReply packet 11-27 
open systems architecture 1-8 

p 

PacerShare I-15 
packet formats 

AARP packet formats 2-11 to 2-12 

ADSP packet format 12-12 to 
12-13 

ASP packet format 11-27 to 11-35 
Open Connection Request 

Control packet format 12-27 
to 12-29 

PAP packet formats 10-12 to 
10-15 

Page Marker comment 14-30 
pages 

comment for making 14-23 
in PostScript 14-19 

PAP. See Printer Access Protocol 
(PAP) 

PAPC!ose call 10-4, 10-11 to 10-12 
description of 10-17 

PAPOpen call 10-4, 10-7 
description of 10-17 

PAPRead call 10-4, 10-10 
description of 10-18 

PAPRegName call 10-4 
description of 10-20 

PAPRemName call 10-4 
PAPStatus call 10-4, 10-12 

description of 10-19 
packet format for 10-15 

PAPWrite call 10-4, 10-10 
description of 10-18 

parent directory 13-12 
Parent ID 13-16 
parent of CNodes 13-12 
passthrough connections 14-14 to 

14-15 
passwords I-17 

volume passwords 13-30 to 
13-31 

pathnames 13-24 
examples of 13-26 

path types 13-24 
PC-net, SMB I-19 
peer-to-peer architecture I-6 
permissions 13-35 
Phase 2, AppleTalk I-24 
PktAttnRecvSeq 12-21 

Index-9 



PktAttnRecvWdw field 12-21 
PktAttnSendSeq 12-21 
PktFirstByteSeq 12-7 

resetting value of 12-10 
summary of 12-10 

PktNextRecvSeq 12-8 
summary of 12-10 

PktRecvWdw 12-10 
PktRecvWdw-1 12-9 
plug-and-play capability I-6 
port descriptor 5-6 
port network number range 5-7 
PostScript 10-3, 14-7. See also 

comments; spooler/servers; 
spooling 

comments 14-20 to 14-23 
document flies in 14-18 to 14-19 
exit server jobs 14-20 
pages in 14-19 
print jobs distinguished from 

document flies 14-19 to 14-20 
prologue in 14-19, 14-22 to 14-23 
queue management and 14-15 

to 14-17 
script in 14-19, 14-22 to 14-23 
structure comments 14-23 to 

14-25 
syntax conventions 14-21 
Title comment 14-28 

Printer Access Protocol (PAP) 1-16, 
10-1 to 10-20 

arbitration, server in 10-7 
client interface 10-16 to 10-20 
connection establishment phase 

10-7 to 10-9 
connection termination phase 

10-11 to 10-12 
data transfer phase 10-9 to 10-10 
duplicate flltration 10-11 
end-of-me message 10-10 
function and result values 10-16 
half-open connections and 10-5 
model of server 10-5 to 10-6 

Index-10 

nonspooler printing through 
14-8 

packet formats 10-12 to 10-15 
parameters for C-11 
result values 10-16 
services 10-4 to 10-5 
tickle transaction 10-9 
WaitTime for 10-8 to 10-9 

Printer Query comments 14-39 
printer-queue protocol (PQP) 14-16 

(0 14-17 
printing 1-15 to 1-17. See also 

comments; ImageWriters; 
LaserWriters 

access to printer, control of 14-10 
to 14-12 

architecture 10-3 
comments 14-20 to 14-23 
direct printing J-16 
header comments 14-25 to 14-26 
Macintosh impact on 14-6 to 

14-7 
nonspooler printing 14-4 to 14-5, 

14-7 10 14-8 
Query comments 14-39 
sample print streams 14-41 to 

14-43 
structure comments 14-23 to 

14-25 
Print Manager, nonspooler printing 

with 14-4 to 14-5 
PrintMonitor 1-15 
print spoolers I -16 
print streams 14-41 to 14-43 
probe with ADSP 12-5, 12-14 
Procedure Set comments 14-30 to 

14-31 
Procedure Set Query comments 

14-40 
ProDOS information parameter 

13-18 to 13-20 
prologue 14-19, 14-22 to 14-23 

protocol address 2-3. See also 
dynamic protocol address 
assignment 

of node 2-4 
request packets and 2-7 
translated to hardware address 

2-6 
verifying packet address 2-10 

protocol architecture 
AFP and 13-7 
alternate spooling environments 

14-11 
diagram of 1-21 
and ISO-OS! reference model 

1-20 to 1-23 
nonspooler printing 14-8 
printer-queue protocol 14-17 
spooler/servers, printing with 

14-9 to 14-10 
protocol family 2-3 
protocols 

defined I-4 
ISO-OS! reference model 1-20 to 

1-23 
simplicity of 1-7 

protocol stack 2-3 
address resolution 2-3 
broadcast protocol address 2-4 
dynamic protocol address 

assignment 2-8 to 2-9 
flltering incoming packets with 

2-9 
single link protocol stack 2-4 

provisional node address 4-8 to 4-9 
pseudorandom numbers 1-13 

Q 
QuantumSize 11-16 
queries 

PostScript 14-19 to 14-20 
sample print streams for 14-42 

query comments 14-34 to 14-41 
conventions for using 14-35 



definitions of 14-36 
Feature Query comments 14-37 
File Query comments 14-37 
Font Query comments 14-38 
Global Query comments 14-39 
Printer Query comments 14-39 
Procedure Set Query comments 

14-40 
Virtual Memory Status Query 

cqmments 14-40 to 14-41 
queue management by 

spooler/servers 14-15 to 14-17 

R 
random number exchange 

(Randnum Exchange) 13-29 
to 13-30 

for spoolers 14-13, 14-14 
read access 13-31 
ReadOnly bits 13-21 
ReceiveFrame function B-17 to B-19 
ReceiveLinkMgmt function B-15 to 

B-17 
ReceivePacket procedure B-15 
reception window size 12-8 to 12-9 
RecvSeq 12-7, 12-8 

summary of 12-11 
RecvWdw 12-11 
registration of name 7-7 

call for 7-12 
release timer 9-6, 9-21 
removing a name. See Deletion of 

names 
Renamelnhibit bit 13-21 
Replace-Entry routine for RTMP 

5-23 
reply block 13-46 to 13-47 
ReqBuffSize 11-18 
request block 13-46 to 13-47 
request control block (RqCB) 9-21 
request packets 2-7 

Echo Request packet 6-4 
formats for 2-11 

gleaning and 2-10 
Routing Table Maintenance 

Protocol (RTMP) 5-17 to 
5-19, 5-23 

request-to-send (RTS) frame 1-10 
required access rights 13-33 to 13-34 
resistors for I.ocalTalk A-4 
resource comments 14-32 to 14-34 

conventions for using 14-32 to 
14-33 

definitions of 14-33 to 14-34 
response control block (RspCB) 

9-21 
response packets 2-7 to 2-8 

formats for 2-11 
Routing Table Maintenance 

Protocol (RTMP) 5-17 to 5-19 
Retransmit Advice Control packet 

12-15 
root 13-11 
router model 5-6 to 5-7 
routes I-13 
routing algorithm 5-25 to 5-26 

for DDP 4-18 to 4-20 
routing seed 5-10 
Routing Table Maintenance Protocol 

(RTMP) I-12 to 1-13, 5-1 to 
5-26. See also internet routers 
(IRs); routing tuples 

aging of entries 5-12 to 5-13 
assignment of network number 

ranges 5-16 to 5-17 
bad entry identification 5-12 to 

5-13 
changing zones lists in 8-21 to 

8-22 
Create-New-Entry routine 5-23 
Datagram Delivery Protocol 

(DDP) and 4-18 to 4-20 
initialization of tables 5-21 
internet topologies and 5-7 
maintenance algorithms 5-21 to 

5-25 
model of router 5-6 to 5-7 

nonrouter nodes 5-17 to 5-20 
notify neighbor technique 5-12 
packet format 5-13 to 5-16 
parameters for C-8 
reducing packet size 5-11 
Replace-Entry routine 5-23 
request and response packet 

formats 5-17 to 5-19 
request packet routine 5-23 
route data requests 5-20 
router model S-6 to 5-7 
routing algorithm 5-25 to 5-26 
routing seed 5-10 
send-RTMP timers 5-13, 5-24 
sockets S-7 
split horizon technique 5-11 
and statically assigned sockets 

(SASs) 4-5 
Update-the-Entry routines 5-22 
validity and 5-13, 5-23 
version number indicator 5-15 
ZIP process and 8-5 

routing tables 5-8 to 5-9 
aging of entries 5-12 to 5-13 
entry state 5-8 
example of 5-9 
initialization of 5-21 

routing tuples 5-10, 5-16 
Copy-in-Tuples routine 5-24 
matching definitions 5-25 

RspCB, releasing of 9-26 
RTMP. See Routing Table 

Maintenance Protocol 
(RTMP) 

RTMP data packets, maintenance 
algorithm for 5-22 

RTMP Route Data Request (RDR) 
packets 5-20 

RTMP sockets 5-7 
RTMP Stub 4-19, 5-18 

for nodes on extended network 
5-19 to 5-20 

RTS-CTS handshake 1-13 to 1-14 

Index-11 



s simplicity of protocols 1-7 spooler/servers 1-16, 14-6, 14-7. See 

sample print streams 14-41 to 14-43 SizeErr 11-19, 11-25 also print spoolers 

saved zone names 8-9 SLClose call 10-12 access to printer, control of 14-10 

script 14-19, 14-22 to 14-23 description of 10-20 to 14-12 

search access users 13-31 SUnit call 10-4, 10-5 direct passthrough connection 

seed routers 5-16 description of 10-19 14-14 to 14-15 

SendData, packet format 10-14 status gathering with 10-12 protocol architecture for printing 

PAP transactions 10-10, 10-11 SMB, PC-net 1-19 with 14-9 to 14-10 

send-RTMP timers 5-13 socket clients 4-5 queue management 14-15 to 

SendSeq 12-7 socket listeners 4-10. See also session 14-17 

resetting value to 12-10 listening socket (SLS) user authentication dialog 14-12 

summary of 12-11 datagram reception by 4-13 to 14-14 

SendStatus 10-12 socket numbers 4-5 SpoolerQuery 14-12 to 14-13 

packet format 10-15 internet socket address 4-6 spooling 1-15, 14-1 to 14-43 See also 

send transaction status (STS) bit 9-12 sockets 4-5. See also AppleTalk PostScript; print spoolers 

to 9-13 Echo Protocol (AEP); background spoolers 14-6 

SendWdwSeq 12-9 connections; zone benefits of 14-5 

summary of 12-11 information socket (ZIS) bypass 14-15 

sequence numbers 12-7 closing of 4-12 comments 14-20 to 14-23 

server calls 13-40 to 13-41 connection-listening sockets direct passthrough connection 

server node IDs 1-5 12-35 to 12-36 14-14 to 14-15 

server session socket (SSS) 11-7 destination sockets 9-2 document structuring 

servers 10-2, 10-3. See also internet socket address 4-6 conventions 14-18 to 14-19 

AppleTalk Session Protocol names information socket (NIS) exit server jobs 14-20 

(ASP); Printer Access Protocol 7-7 nonspooler printing 14-4 to 14-5, 

(PAP) source sockets 9-2 14-7 to 14-8 

and connection-listening sockets terminology table 4-11 queries 14-19 to 14-20 

12-35 to 12-36 sockets table 4-10 query comment, spoolers and 

name servers 1-14 source sockets 9-2 14-35 to 14-36 

Service Access Point (SAP) 3-3 SPAttention call 11-13 to 11-14, 11-22 resource comments 14-32 to 

ServiceStatusBlock 11-22 SPCloseSession call 11-18, 11-24 14-34 

session identifier (session ID) 11-4 SPCmdReply call 11-19 to 11-20, sample print streams 14-41 to 

session listening socket (SLS) 10-2, 11-32 14-43 

10-4 SPCommand call 11-10 to 11-11, standard print jobs 14-19 

AFP login and 13-27 11-25, 11-30 to 11-32 syntax conventions 14-21 

sessions SPError value 11-18, 11-24 SPOpenSession call 11-17, 11-24 

on ASP 11-4 SPGetParms call 11-16, 11-23 SPReqType call 11-19 

maintenance timeout 11-9 SPGetRequest call 11-18 to 11-19, SPWrite call 11-11 to 11-13, 11-26 

opening and closing 11-6 to 11-8 11-20 11-32 

SessRefNum 11-17, 11-24 SPGetSession call 11-17 with error condition 11-12 

set mapping of characters D-2 SPGetStatus call 11-15, 11-23 SPWrtContinue call 11-12, 11-20 to 

short DDP header 4-14, 4-15 SPinit calls 11-17 11-21, 11-33 to 11-34 

short name of catalog 13-13 to 13-14 split horizon technique 5-11 SPWrtReply call 11-20, 11-21, 11-32 
SPNewStatus call 11-22 standard print jobs 14-19 

Index-12 



staitUp range 4-9 
statically assigned sockets (SASs) 4-5 

AppleTalk Echo Protocol (AEP) 
and 6-1- to 6-4 

opening of 4-11 
RTMP sockets and 5-7 
use of 4-21 

Status, in PAP 10-12 
stream protocols 1-14 to 1-15 
structure comments 14-23 to 14-25 

sample print streams for 14-41 to 
14-42 

Sub-Network Access Protocol 
(SNAP) 3-3 

EtherTalk Link Access Protocol 
(ELAP) and H 

TokenTalk Link Access Protocol 
(TLAP) and H 

Sun Microsystem I-19 
synchronization pulse 1-10 
synchronization rules 13-35, 13-36 
Synchronous Data Link Control 

(SDLC) frame format A-2 
syntax conventions, PostScript 14-21 

T 
THIS-NET 4-19 
THIS-NET-RANGE 4-19 

extended networks, nodes on 
5-19 to 5-20 

throughput of half routers 5-4 
tickle transaction 10-5, 10-9 

ASP, tickle packet in 11-9, 11-35 
connection termination phase 

10-11 
packet format 10-14 

T!Ds 9-3, 9-9 to 9-10 
generation of 9-27 to 9-28 
in packet format 9-15 
sending response call 9-20 
wraparound of 9-27 to 9-28 

timers 
in Forward Reset Control packet 

12-10 
ZIP timer values 8-24 

Title comment 14-28 
TLAP. See TokenTalk Link Access 

Protocol (TLAP) 
token ring network. See also 

TokenTalk Link Access 
Protocol (TLAP) 

AARP packets on 3-11 to 3-12 
connectivity I -9 
TLAP packets and 3-6 to 3-7 

TokenTalk 1-9, 1-11. See also 
TokenTalk Link Access 
Protocol (TLAP) 

AppleTalk Internet Router I-24 
as extended network 4-7 
parameters for C-4 to C-5 

TokenTalk Link Access Protocol 
(TLAP) I-11, 3-1 to 3-12 

address mapping in 3-7 to 3-10 
802.2 standard and 3-3 
node IDs for 3-9 
packet formats 3-6 to 3-7 
zone multicast addresses used by 

3-10 
topology of network I-8 
Trailer comment 14-31 to 14-32 
transaction control block (TCB) 9-21 

releasing of 9-26 to 9-27 
transaction identifiers. See T!Ds 
Transaction Release packet. See TRel 

packet 
Transaction Request packet. See 

TReq packet 
Transaction Response packet. See 

TResp packet 
transactions list 9.{) 
transformer specifications for 

Loca!Talk A-5 to A-8 
TransmitFrame procedure B-14 
TransmitLinkMgmt function B-8 to 

B-13 

TransmitPacket function B-8 
TRel packet 9.{) 

ATP responder 9-24 to 9-25 
timer I-24 

TReq packet 9-3, 9-6 
ATP responder 9-24 to 9-25 
bitmap for 9-10 to 9-12 
call for 9-17 to 9-18 
closing responding socket call 

9-19 
generation of T!Ds and 9-28 
multipacket responses 9-9 
opening responding socket call 

9-18 
PAP receiving 10-7 
receiving request call 9-19 

TResp packet 9-3 
ATP requester 9-22 to 9-23 
bitmap for 9-10 to 9-12 
multipacket responses 9-9 

tuples. See also routing tuples 
NBP tuples in packets 7-15 to 

7-17 
type fields, LLAP 1.{) to 1-8 

u 
UARights 13-31, 13-32 to 13-33 
UNIX me system 1-19 
Update-the-Eritry routines for RTMP 

5-22 
user access rights 13-31, 13-32 to 

13-33 
user authentication methods (UAMs) 

13-8, 13-28 to 13-30 
for spooler/servers 14-12 to 14-14 

user names 1-17 
user node IDs 1-5 

v 
variable Directory ID volume 13-11 

to 13-12 
V AX-resident file services I-15 

Index-13 



verifying saved zone names 8-9 
versatility of system I-6 
Virtual Memory Status Query 

comments 14-40 to 14-41 
virtual volumes 13-12 
volume calls 13-41 
volume catalog 13-7 to 13-8. See 

also CNodes 
examples of 13-25 

Volume 10 13-10, 10-41 
volumes 1-17 

AFP and 13-9 to 13-13 
mounting of 13-12 
passwords 13-30 to 13-31 
types of 13-10 to 13-12 

volume signature 13-10 

w 
WaitTime for PAP 10-8 to 10-9 
wildcards in entity name 7-4 
workstation session socket (WSS) 

11-7 
world access rights 13-32 
wraparound of TIDs 9-27 to 9-28 
write access users 13-31 
WriteDataSize 11-26 
Writelnhibit bit 13-21 

X 
XO transactions. See exactly-once 

(XO) transactions 

z 
Zilog 8530 Serial Communications 

Controller (SCC) A-3 
implementation of B-20 to B-22 

ZIP. See Zone Infonnation Protocol 
(ZIP) 

ZIP bringback time 8-22, 8-24 
ZIP Notify packet 8-22 to 8-23 
ZIP Queries 8-5 to 8-7 

packet formats 8-11 to 8-12 

Index-14 

zone name listing 8-7 to 8-8 
ZIP Reply 8-5 to 8-7 

extended replies 8-11 to 8-12 
packet formats 8-11 to 8-12 

ZIP stub 8-22 
Zone Information Protocol (ZIP) 

I-14, 8-1 to 8-24 
acquisition of names 8-9 to 8-10 
aging zone names 8-10 
assignment of zones lists 8-20 to 

8-21 
ATP requests 8-13 to 8-15 
changing zones lists 8-21 to 8-24 
default zones 8-5 
for ELAP 3-10 
FwdReq packets 8-19 
GetNetlnfo packet formats 8-16 

to 8-17 
internet routers and 8-18 to 8-20 
LkUps, converting FwdReqs to 

8-19 to 8-20 
multicasting zones 8-10 
network-to-zone name mapping 

8-4 
new zone names 8-10 
nodes, changing zone names in 

8-22 
packet formats 8-11 to 8-17 
parameters for C-1 0 
routers including 5-7 
services of 8-4 
timer values 8-24 
for nAP 3-10 
zone information socket (ZIS) 

8-5 
zone information table (ZI'O 8-4 

to 8-5 
zones list 8-4 

zone information socket (ZIS) 8-5 
GetNetlnfo packet formats 8-16 

to 8-17 
zone information table <zm 8-4 to 

8-5 
maintenance of 8-5 to 8-7 

zone multicasting 8-10 
addresses C-5 
computation of address 8-18 
GetNetlnfo packet formats 8-16 

to 8-17 
zones. See also Zone Infonnation 

Protocol (ZIP) 
Name Binding Protocol (NBP) 

and 7-10 
zones lists 8-4 

assignment of 8-20 to 8-21 
changing of 8-21 to 8-24 
NIL zones lists 8-20 to 8-21 

zone-specific broadcast 4-6 



The Apple Publishing System 

Inside AppleTalk, Second Edition, was 
written, edited, and composed on a 
desktop publishing system using Apple® 
Macintosh® computers and 
Microsoft® Word. Proof pages were 
created on the Apple LaserWriter® 
printers; ftnal pages were printed on a 
Varityper®Vf600™. Line art was created 
using Adobe Illustrator™ and typeset on 
a Linotronic® 300. PostScript®, the 
LaserWriter page-description language, 
was developed by Adobe Systems 
Incorporated. 

Text type and display type are Apple's 
corporate font, a condensed version of 
lTC Garamond®. Bullets are lTC Zapf 
Dingbats®. Some elements, such as 
program listings, are set in Apple Courier, 
a fiXed-width font. 





, 

Inside AppleTalk; Second Edition 
n1e Official Pub/icalioll flvm Apple Computer, lite. 

Written by Gursharan S. Sidhu, technical director of Network Systems Development at 
Apple Computer, and rwo of Apple's senior staff engineers - Richard F. Andrews and 
Alan B. Oppenheimer - Inside Apple Talk provides an in-depth discussion of the protocol 
architecture of d1e Apple Talk network system. This Second Edition features completely 
updated, derailed descriptions of the Apple Talk protocols, including the enhancements of 
AppleTalk Phase 2, as well as a fundamental overview by Mr. Sidhu. 

Key topics covered include: 
• Physical and clara-link alternatives 
• Transmission between nodes via the LocalTalk~ Link Access Protocol (LLAP), EtherTalkl! 

Link Access Protocol (TIAP), and Token Talk!! Link Access Protocol (TIAP) 
• Handling addressing differences with the AppleTalk Address Resolution Protocol (AARP) 
• Facilitating end-to-end transmission of data via d1e Datagram Delivery Protocol (DDP), 

Routing Table Maintenance Protocol (RTMP), and Apple Talk Echo Protocol (AEP) 
• Handling naming and data flow with d1e AppleTalk Transaction Protocol (A TP), Name 

Binding Protocol (NBP), and Zone Information Protocol (ZIP) 
• Guaranteeing reliable, sequenced data delivery over the network via the Printer 

Access Protocol (PAP), AppleTalk Data Stream Protocol (AD~"' ' · ~~~ · 

• ~~~~s~r~:;ces with d1e AppleTalk Filing Protocol (AFP) a1 Ill I 11 11_\llllllllllllllllllllll 
• Appendixes that cover LocalTalk specifications, the LLAP procedural model, and 

AppleTalk parameters 

Inside AppleTalk, Second Edition is the essential developer tool and programmer's 
compendium of AppleTalk protocols. With dlis reference volume, Apple Computer provides 
developers with the information they need to create applications for d1e AppleTalk network 
system. 

Pan of the Apple~ Communications Library Printed in U.S.A. 

Apple Computer, Inc. 
20525 Mariani Avenue 
Cupertino, CA 95014 
( 408) 996-1010 
TlX 171-576 

Addison-Wesley Publishing Company 

lllllllllllllllllllllllllllllluilllllillillll 
:4~~? IIIIIIIIIIIIIJJVlllllllflll ll II IIIII 
2014-12-10 12 S\lb ' . --
ln;ldo Appletalk (The Applo 
connuctlvlty llbrary) (Hardcovor] 119001 38248SU 125 I Enghah I Hul'dcovor 

________________ ....................... ..... 



Inside AppleTalk; 
Second Edition 
1be Official Publication from Apple Computer, Inc. 

About the authors: Gursharan S. Sidhu is 
technical director of Network Systems 
Development at Apple Computer where he has 
been architect of the AppleTalk network system 
and a variety of other products, including 
AppleShare(lb and the Macintosh® Hierarchical 
File System. He received his B.S. from the Indian 
Institute of Technology and his M.S. and Ph.D. 
from Stanford University. He has been at 
Apple since 1982. Richard F. Andrews and 
Alan B. Oppenheimer, both staff engineers in 
Apple's Network System Development department 
since 1983, have played lead roles in the design of 
the AppleTalk network system. Mr. Andrews, with a 
B.S.E.E. from The Cooper Union and an M.S.C.S. 
from U.C.L.A., was project leader for the 
AppleShare file server and led development of the 
AppleTalk Filing Protocol. Mr. Oppenheimer, who 
received his B.S. and M.S. from M.I.T., played a 
leading role in implementing the AppleTalk core 
protocols for the Macintosh and worked on the 
design and implementation of EtherTalk®. 

Part of the Apple® Communications Library 

For more information 
APDA Til provides a wide range of development 
products and documentation, from Apple and other 
suppliers, for programmers and developers who 
work on Apple equipment. For information about 
APDA, contact 

APDA 
Apple Computer, Inc. 
20525 Mariani Avenue, Mailstop 33-G 
Cupertino, California 95014 USA 
(800) 282-APDA or (800) 282-2732 


